More on inhomogeneous diophantine approximation

Christopher G. Pinner

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 2, page 539-557
  • ISSN: 1246-7405

Abstract

top
For an irrational real number α and real number γ we consider the inhomogeneous approximation constant M ( α , γ ) : = lim inf | n | | n | | | n α - γ | | via the semi-regular negative continued fraction expansion of α α = 1 a 1 - 1 a 2 - 1 a 3 - and an appropriate alpha-expansion of γ . We give an upper bound on the case of worst inhomogeneous approximation, ρ ( α ) : = sup γ 𝐙 + α 𝐙 M ( α , γ ) , which is sharp when the partial quotients ai are almost all even and at least four. When the negative expansion has period one we give a complete description of the spectrum of values L ( α ) : = { M ( α , γ ) : γ 𝐙 + α 𝐙 } , above the first limit point.

How to cite

top

Pinner, Christopher G.. "More on inhomogeneous diophantine approximation." Journal de théorie des nombres de Bordeaux 13.2 (2001): 539-557. <http://eudml.org/doc/248712>.

@article{Pinner2001,
abstract = {For an irrational real number$\alpha $ and real number $\gamma $ we consider the inhomogeneous approximation constant\begin\{equation*\} M(\alpha , \gamma ) := \liminf \_\{|n| \rightarrow \infty \} |n|||n \alpha - \gamma || \end\{equation*\}via the semi-regular negative continued fraction expansion of $\alpha $\begin\{equation*\} \alpha = \cfrac\{1\}\{a\_1- \cfrac\{1\}\{a\_2- \cfrac\{1\}\{a\_3- \cdots \}\}\} \end\{equation*\}and an appropriate alpha-expansion of $\gamma $. We give an upper bound on the case of worst inhomogeneous approximation,\begin\{equation*\} \rho (\alpha ) := \sup \_\{\gamma \notin \mathbf \{Z\}+ \alpha \mathbf \{Z\}\} M(\alpha , \gamma ), \end\{equation*\}which is sharp when the partial quotients ai are almost all even and at least four. When the negative expansion has period one we give a complete description of the spectrum of values\begin\{equation*\} L(\alpha ) := \lbrace M(\alpha , \gamma ) : \gamma \notin \mathbf \{Z\} + \alpha \mathbf \{Z\} \rbrace , \end\{equation*\}above the first limit point.},
author = {Pinner, Christopher G.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {inhomogeneous approximation constants; semi-regular continued fraction; one-sided approximation spectrum; backward continued fraction expansion; -expansion},
language = {eng},
number = {2},
pages = {539-557},
publisher = {Université Bordeaux I},
title = {More on inhomogeneous diophantine approximation},
url = {http://eudml.org/doc/248712},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Pinner, Christopher G.
TI - More on inhomogeneous diophantine approximation
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 539
EP - 557
AB - For an irrational real number$\alpha $ and real number $\gamma $ we consider the inhomogeneous approximation constant\begin{equation*} M(\alpha , \gamma ) := \liminf _{|n| \rightarrow \infty } |n|||n \alpha - \gamma || \end{equation*}via the semi-regular negative continued fraction expansion of $\alpha $\begin{equation*} \alpha = \cfrac{1}{a_1- \cfrac{1}{a_2- \cfrac{1}{a_3- \cdots }}} \end{equation*}and an appropriate alpha-expansion of $\gamma $. We give an upper bound on the case of worst inhomogeneous approximation,\begin{equation*} \rho (\alpha ) := \sup _{\gamma \notin \mathbf {Z}+ \alpha \mathbf {Z}} M(\alpha , \gamma ), \end{equation*}which is sharp when the partial quotients ai are almost all even and at least four. When the negative expansion has period one we give a complete description of the spectrum of values\begin{equation*} L(\alpha ) := \lbrace M(\alpha , \gamma ) : \gamma \notin \mathbf {Z} + \alpha \mathbf {Z} \rbrace , \end{equation*}above the first limit point.
LA - eng
KW - inhomogeneous approximation constants; semi-regular continued fraction; one-sided approximation spectrum; backward continued fraction expansion; -expansion
UR - http://eudml.org/doc/248712
ER -

References

top
  1. [1] E.S. Barnes, H.P.F. Swinnerton-Dyer, The inhomogeneous minima of binary quadratic forms. Part I, Acta Math.87 (1952), 259-323; Part II, Acta Math.88 (1952), 279-316; Part III, Acta Math.92 (1954), 199-234; Part IV (without second author) Acta Math.92 (1954), 235-264. Zbl0056.27301
  2. [2] T.W. Cusick, A.M. Rockett, P. Szúsz, On inhomogeneous Diophantine approximation. J. Number Theory48 (1994), 259-283. Zbl0820.11042MR1293862
  3. [3] H. Davenport, Non-homogeneous binary quadratic forms. Nederl. Akad. Wetensch. Proc.50 (1947), 741-749, 909-917 = Indagationes Math.9 (1947), 351-359, 420-428. Zbl0060.11906MR23856
  4. [4] T. Komatsu, On inhomogeneous diophantine approximation and the Nishioka - Shiokawa- Tamura algorithm. Acta Arith.86 (1998), 305-324. Zbl0930.11049MR1659089
  5. [5] W. Moran, C. Pinner, A. Pollington, On inhomogeneous Diophantine approximation, preprint. 
  6. [6] P. Varnavides, Non-homogeneous quadratic forms, I, II. Nederl. Akad. Wetensch. Proc.51, (1948) 396-404, 470-481. = Indagationes Math.10 (1948), 142-150, 164-175. Zbl0030.01901MR25517

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.