S -integral points on elliptic curves - Notes on a paper of B. M. M. de Weger

Emanuel Herrmann; Attila Pethö

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 2, page 443-451
  • ISSN: 1246-7405

Abstract

top
In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and p -adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.

How to cite

top

Herrmann, Emanuel, and Pethö, Attila. "$S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger." Journal de théorie des nombres de Bordeaux 13.2 (2001): 443-451. <http://eudml.org/doc/248713>.

@article{Herrmann2001,
abstract = {In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and $p$-adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.},
author = {Herrmann, Emanuel, Pethö, Attila},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {-integral point; elliptic curve linear form in elliptic logarithms; -adic elliptic logarithm},
language = {eng},
number = {2},
pages = {443-451},
publisher = {Université Bordeaux I},
title = {$S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger},
url = {http://eudml.org/doc/248713},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Herrmann, Emanuel
AU - Pethö, Attila
TI - $S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 443
EP - 451
AB - In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and $p$-adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.
LA - eng
KW - -integral point; elliptic curve linear form in elliptic logarithms; -adic elliptic logarithm
UR - http://eudml.org/doc/248713
ER -

References

top
  1. [1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language. J. Symb. Comp., 24, 3/4 (1997), 235-265. (See also the Magma home page at http://www.maths.usyd.edu.au:8000/u/magma/) Zbl0898.68039MR1484478
  2. [2] S. David, Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc. Math. France(N.S.) 62 (1995). Zbl0859.11048MR1385175
  3. [3] J. Gebel, A. Peth, H.G. Zimmer, Computing integral points on elliptic curves. Acta Arith.68 (1994), 171-192. Zbl0816.11019MR1305199
  4. [4] J. Gebel, A. Peth, H.G. Zimmer, Computing S-integral points on elliptic curves. Algorithmic number theory (Talence, 1996), 157-171, Lecture Notes in Comput. Sci.1122, Springer, Berlin, 1996. Zbl0899.11012MR1446509
  5. [5] A. Peth, H.G. Zimmer, J. Gebel, E. Herrmann, Computing all S-integral points on elliptic curves. Math. Proc. Cambr. Phil. Soc.127 (1999), 383-402. Zbl0949.11033MR1713117
  6. [6] G. Rémond, F. Urfels, Approximation diophantienne de logarithmes elliptiques p-adiques. J. Numb. Th.57 (1996), 133-169. Zbl0853.11055MR1378579
  7. [7] J.H. Silverman, The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics106, Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
  8. [8] N.P. Smart, S-integral Points on elliptic curves. Math. Proc. Cambr. Phil. Soc.116 (1994), 391-399. Zbl0817.11031MR1291748
  9. [9] J.T. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil. Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 33-52, Lecture Notes in Math.476, Springer, Berlin, 1975. Zbl1214.14020MR393039
  10. [10] N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations. Acta Arith.75 (1996), 165-190. Zbl0858.11016MR1379397
  11. [11] B.M.M. De Weger, Algorithms for Diophantine equations. PhD Thesis, Centr. for Wiskunde en Informatica, Amsterdam, 1987. Zbl0687.10013
  12. [12] B.M.M. De Weger, S-integral solutions to a Weierstrass equation, J. Théor. Nombres Bordeaux9 (1997), 281-301. Zbl0898.11009MR1617399
  13. [13] Apecs, Arithmetic of plane elliptic curves, ftp://ftp.math.mcgill.ca/pub/apecs. 
  14. [14] mwrank, a package to compute ranks of elliptic curves over the rationals. http://www.maths.nott.ac.uk/personal/jec/ftp/progs. 
  15. [15] Simath, a computer algebra system for algorithmic number theory. http://simath.math.unisb.de. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.