-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger
Emanuel Herrmann; Attila Pethö
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 2, page 443-451
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topHerrmann, Emanuel, and Pethö, Attila. "$S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger." Journal de théorie des nombres de Bordeaux 13.2 (2001): 443-451. <http://eudml.org/doc/248713>.
@article{Herrmann2001,
	abstract = {In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and $p$-adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.},
	author = {Herrmann, Emanuel, Pethö, Attila},
	journal = {Journal de théorie des nombres de Bordeaux},
	keywords = {-integral point; elliptic curve linear form in elliptic logarithms; -adic elliptic logarithm},
	language = {eng},
	number = {2},
	pages = {443-451},
	publisher = {Université Bordeaux I},
	title = {$S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger},
	url = {http://eudml.org/doc/248713},
	volume = {13},
	year = {2001},
}
TY  - JOUR
AU  - Herrmann, Emanuel
AU  - Pethö, Attila
TI  - $S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2001
PB  - Université Bordeaux I
VL  - 13
IS  - 2
SP  - 443
EP  - 451
AB  - In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and $p$-adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.
LA  - eng
KW  - -integral point; elliptic curve linear form in elliptic logarithms; -adic elliptic logarithm
UR  - http://eudml.org/doc/248713
ER  - 
References
top- [1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language. J. Symb. Comp., 24, 3/4 (1997), 235-265. (See also the Magma home page at http://www.maths.usyd.edu.au:8000/u/magma/) Zbl0898.68039MR1484478
- [2] S. David, Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc. Math. France(N.S.) 62 (1995). Zbl0859.11048MR1385175
- [3] J. Gebel, A. Peth, H.G. Zimmer, Computing integral points on elliptic curves. Acta Arith.68 (1994), 171-192. Zbl0816.11019MR1305199
- [4] J. Gebel, A. Peth, H.G. Zimmer, Computing S-integral points on elliptic curves. Algorithmic number theory (Talence, 1996), 157-171, Lecture Notes in Comput. Sci.1122, Springer, Berlin, 1996. Zbl0899.11012MR1446509
- [5] A. Peth, H.G. Zimmer, J. Gebel, E. Herrmann, Computing all S-integral points on elliptic curves. Math. Proc. Cambr. Phil. Soc.127 (1999), 383-402. Zbl0949.11033MR1713117
- [6] G. Rémond, F. Urfels, Approximation diophantienne de logarithmes elliptiques p-adiques. J. Numb. Th.57 (1996), 133-169. Zbl0853.11055MR1378579
- [7] J.H. Silverman, The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics106, Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
- [8] N.P. Smart, S-integral Points on elliptic curves. Math. Proc. Cambr. Phil. Soc.116 (1994), 391-399. Zbl0817.11031MR1291748
- [9] J.T. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil. Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 33-52, Lecture Notes in Math.476, Springer, Berlin, 1975. Zbl1214.14020MR393039
- [10] N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations. Acta Arith.75 (1996), 165-190. Zbl0858.11016MR1379397
- [11] B.M.M. De Weger, Algorithms for Diophantine equations. PhD Thesis, Centr. for Wiskunde en Informatica, Amsterdam, 1987. Zbl0687.10013
- [12] B.M.M. De Weger, S-integral solutions to a Weierstrass equation, J. Théor. Nombres Bordeaux9 (1997), 281-301. Zbl0898.11009MR1617399
- [13] Apecs, Arithmetic of plane elliptic curves, ftp://ftp.math.mcgill.ca/pub/apecs.
- [14] mwrank, a package to compute ranks of elliptic curves over the rationals. http://www.maths.nott.ac.uk/personal/jec/ftp/progs.
- [15] Simath, a computer algebra system for algorithmic number theory. http://simath.math.unisb.de.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 