S -integral solutions to a Weierstrass equation

Benjamin M. M. de Weger

Journal de théorie des nombres de Bordeaux (1997)

  • Volume: 9, Issue: 2, page 281-301
  • ISSN: 1246-7405

Abstract

top
The rational solutions with as denominators powers of 2 to the elliptic diophantine equation y 2 = x 3 - 228 x + 848 are determined. An idea of Yuri Bilu is applied, which avoids Thue and Thue-Mahler equations, and deduces four-term ( S -) unit equations with special properties, that are solved by linear forms in real and p -adic logarithms.

How to cite

top

de Weger, Benjamin M. M.. "$S$-integral solutions to a Weierstrass equation." Journal de théorie des nombres de Bordeaux 9.2 (1997): 281-301. <http://eudml.org/doc/247994>.

@article{deWeger1997,
abstract = {The rational solutions with as denominators powers of $2$ to the elliptic diophantine equation $y^2 = x^3 - 228x + 848$ are determined. An idea of Yuri Bilu is applied, which avoids Thue and Thue-Mahler equations, and deduces four-term ($S$-) unit equations with special properties, that are solved by linear forms in real and $p$-adic logarithms.},
author = {de Weger, Benjamin M. M.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {elliptic curves; cubic diophantine equations; integral points; rational solutions; -unit equations; Weierstrass equation},
language = {eng},
number = {2},
pages = {281-301},
publisher = {Université Bordeaux I},
title = {$S$-integral solutions to a Weierstrass equation},
url = {http://eudml.org/doc/247994},
volume = {9},
year = {1997},
}

TY - JOUR
AU - de Weger, Benjamin M. M.
TI - $S$-integral solutions to a Weierstrass equation
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 2
SP - 281
EP - 301
AB - The rational solutions with as denominators powers of $2$ to the elliptic diophantine equation $y^2 = x^3 - 228x + 848$ are determined. An idea of Yuri Bilu is applied, which avoids Thue and Thue-Mahler equations, and deduces four-term ($S$-) unit equations with special properties, that are solved by linear forms in real and $p$-adic logarithms.
LA - eng
KW - elliptic curves; cubic diophantine equations; integral points; rational solutions; -unit equations; Weierstrass equation
UR - http://eudml.org/doc/247994
ER -

References

top
  1. [B] Yu. Bilu, "Solving superelliptic Diophantine equations by the method of Gelfond-Baker ", Preprint 94-09, Mathématiques Stochastiques, Univ. Bordeaux2 [1994]. 
  2. [BH] Yu. Bilu AND G. Hanrot, "Solving superelliptic Diophantine equations by Baker's method", Compos. Math., to appear. Zbl0915.11065
  3. [BW] A. Baker AND G. Wüstholz, "Logarithmic forms and group varieties ", J. reine angew. Math.442 [1993], 19-62. Zbl0788.11026MR1234835
  4. [D] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. de France, Num.62 [1995]. Zbl0859.11048MR1385175
  5. [GPZ1] J. Gebel, A. Pethö AND H.G. Zimmer, "Computing integral points on elliptic curves", Acta Arith.68 [1994], 171-192. Zbl0816.11019MR1305199
  6. [GPZ2] J. Gebel, A. Pethö AND H.G. Zimmer, "Computing S-integral points on elliptic curves", in: H. COHEN (ED.), Algorithmic Number Theory, Proceedings ANTS-II, Lecture Notes in Computer Science VOl. 1122, Springer-Verlag, Berlin [1996], pp. 157-171. Zbl0899.11012MR1446509
  7. [RU] G. Remond AND F. Urfels, "Approximation diophantienne de logarithmes elliptiques p-adiques", J. Number Th.57 [1996], 133-169. Zbl0853.11055MR1378579
  8. [S] N.P. Smart, "S-integral points on elliptic curves", Math. Proc. Cambridge Phil. Soc.116 [1994], 391-399. Zbl0817.11031MR1291748
  9. [ST] R.J. Stroeker AND N. Tzanakis, "Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms", Acta Arith.67 [1994], 177-196. Zbl0805.11026MR1291875
  10. [SW1] R.J. Stroeker AND B.M.M. De Weger, "On a quartic diophantine equation", Proc. Edinburgh Math. Soc.39 [1996], 97-115. Zbl0861.11020MR1375670
  11. [T] N. Tzanakis, "Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations", Acta Arith.75 [1996], 165-190. Zbl0858.11016MR1379397
  12. [TW1] N. Tzanakis AND B.M.M. De Weger, "On the practical solution of the Thue equation", J. Number Th.31 [1989], 99-132. Zbl0657.10014MR987566
  13. [TW2] N. Tzanakis AND B.M.M. De Weger, "How to explicitly solve a Thue-Mahler equation", Compos. Math.84 [1992], 223-288. Zbl0773.11023MR1189890
  14. [Y] K.R. Yu, "Linear forms in p-adic logarithms III", Compos. Math.91 [1994], 241-276. Zbl0819.11025MR1273651

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.