Displaying similar documents to “Iwasawa theory for elliptic curves over imaginary quadratic fields”

An annihilator for the p -Selmer group by means of Heegner points

Massimo Bertolini (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let E / Q be a modular elliptic curve, and let K be an imaginary quadratic field. We show that the p -Selmer group of E over certain finite anticyclotomic extensions of K , modulo the universal norms, is annihilated by the «characteristic ideal» of the universal norms modulo the Heegner points. We also extend this result to the anticyclotomic Z p -extension of K . This refines in the current contest a result of [1].

On the classgroups of imaginary abelian fields

David Solomon (1990)

Annales de l'institut Fourier

Similarity:

Let p be an odd prime, χ an odd, p -adic Dirichlet character and K the cyclic imaginary extension of Q associated to χ . We define a “ χ -part” of the Sylow p -subgroup of the class group of K and prove a result relating its p -divisibility to that of the generalized Bernoulli number B 1 , χ - 1 . This uses the results of Mazur and Wiles in Iwasawa theory over Q . The more difficult case, in which p divides the order of χ is our chief concern. In this case the result is new and confirms an earlier conjecture...