The class number one problem for the dihedral and dicyclic CM-fields

Stéphane Louboutin

Colloquium Mathematicae (1999)

  • Volume: 80, Issue: 2, page 259-265
  • ISSN: 0010-1354

Abstract

top
We recall the determination of all the dihedral CM-fields with relative class number one, and prove that dicyclic CM-fields have relative class numbers greater than one.

How to cite

top

Louboutin, Stéphane. "The class number one problem for the dihedral and dicyclic CM-fields." Colloquium Mathematicae 80.2 (1999): 259-265. <http://eudml.org/doc/210717>.

@article{Louboutin1999,
abstract = {We recall the determination of all the dihedral CM-fields with relative class number one, and prove that dicyclic CM-fields have relative class numbers greater than one.},
author = {Louboutin, Stéphane},
journal = {Colloquium Mathematicae},
keywords = {relative class number; CM-field; dihedral group; dicyclic group; CM-fields; class number one problems; dihedral fields; dicyclic fields},
language = {eng},
number = {2},
pages = {259-265},
title = {The class number one problem for the dihedral and dicyclic CM-fields},
url = {http://eudml.org/doc/210717},
volume = {80},
year = {1999},
}

TY - JOUR
AU - Louboutin, Stéphane
TI - The class number one problem for the dihedral and dicyclic CM-fields
JO - Colloquium Mathematicae
PY - 1999
VL - 80
IS - 2
SP - 259
EP - 265
AB - We recall the determination of all the dihedral CM-fields with relative class number one, and prove that dicyclic CM-fields have relative class numbers greater than one.
LA - eng
KW - relative class number; CM-field; dihedral group; dicyclic group; CM-fields; class number one problems; dihedral fields; dicyclic fields
UR - http://eudml.org/doc/210717
ER -

References

top
  1. [Hof] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47. Zbl0474.12009
  2. [Lef] Y. Lefeuvre, Corps diédraux à multiplication complexe principaux, preprint, Univ. Caen, 1998. 
  3. [LL] Y. Lefeuvre and S. Louboutin, The class number one problem for the dihedral CM-fields, in: Proc. Conf. on Algebraic Number Theory and Diophantine Analysis, Graz, August-September 1998, to appear. Zbl0958.11071
  4. [LLO] F. Lemmermeyer, S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux, to appear. Zbl1010.11063
  5. [Lou1] S. Louboutin, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc. 54 (1996), 227-238. Zbl0861.11064
  6. [Lou2] S. Louboutin, CM-fields with cyclic ideal class groups of 2-power orders, J. Number Theory 67 (1997), 1-10. Zbl0881.11078
  7. [LO1] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47-62. Zbl0809.11069
  8. [LO2] S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc. (3) 76 (1998), 523-548. Zbl0891.11054
  9. [LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), 3657-3678. Zbl0893.11045
  10. [Mar] J. Martinet, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 1-80. Zbl0165.06502
  11. [Odl] A. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), 275-286. Zbl0299.12010
  12. [TW] A. D. Thomas and G. V. Wood, Group Tables, Shiva Publ. Kent, 1980. 
  13. [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982; 2nd ed., 1997. 
  14. [Yam] K. Yamamura, The determination of the imaginary abelian number fields with class-number one, Math. Comp. 206 (1994), 899-921. Zbl0798.11046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.