The class number one problem for the dihedral and dicyclic CM-fields
Colloquium Mathematicae (1999)
- Volume: 80, Issue: 2, page 259-265
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topLouboutin, Stéphane. "The class number one problem for the dihedral and dicyclic CM-fields." Colloquium Mathematicae 80.2 (1999): 259-265. <http://eudml.org/doc/210717>.
@article{Louboutin1999,
abstract = {We recall the determination of all the dihedral CM-fields with relative class number one, and prove that dicyclic CM-fields have relative class numbers greater than one.},
author = {Louboutin, Stéphane},
journal = {Colloquium Mathematicae},
keywords = {relative class number; CM-field; dihedral group; dicyclic group; CM-fields; class number one problems; dihedral fields; dicyclic fields},
language = {eng},
number = {2},
pages = {259-265},
title = {The class number one problem for the dihedral and dicyclic CM-fields},
url = {http://eudml.org/doc/210717},
volume = {80},
year = {1999},
}
TY - JOUR
AU - Louboutin, Stéphane
TI - The class number one problem for the dihedral and dicyclic CM-fields
JO - Colloquium Mathematicae
PY - 1999
VL - 80
IS - 2
SP - 259
EP - 265
AB - We recall the determination of all the dihedral CM-fields with relative class number one, and prove that dicyclic CM-fields have relative class numbers greater than one.
LA - eng
KW - relative class number; CM-field; dihedral group; dicyclic group; CM-fields; class number one problems; dihedral fields; dicyclic fields
UR - http://eudml.org/doc/210717
ER -
References
top- [Hof] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47. Zbl0474.12009
- [Lef] Y. Lefeuvre, Corps diédraux à multiplication complexe principaux, preprint, Univ. Caen, 1998.
- [LL] Y. Lefeuvre and S. Louboutin, The class number one problem for the dihedral CM-fields, in: Proc. Conf. on Algebraic Number Theory and Diophantine Analysis, Graz, August-September 1998, to appear. Zbl0958.11071
- [LLO] F. Lemmermeyer, S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux, to appear. Zbl1010.11063
- [Lou1] S. Louboutin, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc. 54 (1996), 227-238. Zbl0861.11064
- [Lou2] S. Louboutin, CM-fields with cyclic ideal class groups of 2-power orders, J. Number Theory 67 (1997), 1-10. Zbl0881.11078
- [LO1] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47-62. Zbl0809.11069
- [LO2] S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc. (3) 76 (1998), 523-548. Zbl0891.11054
- [LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), 3657-3678. Zbl0893.11045
- [Mar] J. Martinet, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 1-80. Zbl0165.06502
- [Odl] A. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), 275-286. Zbl0299.12010
- [TW] A. D. Thomas and G. V. Wood, Group Tables, Shiva Publ. Kent, 1980.
- [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982; 2nd ed., 1997.
- [Yam] K. Yamamura, The determination of the imaginary abelian number fields with class-number one, Math. Comp. 206 (1994), 899-921. Zbl0798.11046
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.