Pointwise convergence and the Wadge hierarchy
Alessandro Andretta; Alberto Marcone
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 1, page 159-172
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAndretta, Alessandro, and Marcone, Alberto. "Pointwise convergence and the Wadge hierarchy." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 159-172. <http://eudml.org/doc/248817>.
@article{Andretta2001,
abstract = {We show that if $X$ is a $\Sigma _1^1$ separable metrizable space which is not $\sigma $-compact then $C_p^* (X)$, the space of bounded real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _1^1$-complete. Assuming projective determinacy we show that if $X$ is projective not $\sigma $-compact and $n$ is least such that $X$ is $\Sigma _n^1$ then $C_p (X)$, the space of real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _n^1$-complete. We also prove a simultaneous improvement of theorems of Christensen and Kechris regarding the complexity of a subset of the hyperspace of the closed sets of a Polish space.},
author = {Andretta, Alessandro, Marcone, Alberto},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Wadge hierarchy; function spaces; pointwise convergence; Wadge hierarchy; function spaces; pointwise convergence; analytic sets},
language = {eng},
number = {1},
pages = {159-172},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Pointwise convergence and the Wadge hierarchy},
url = {http://eudml.org/doc/248817},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Andretta, Alessandro
AU - Marcone, Alberto
TI - Pointwise convergence and the Wadge hierarchy
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 159
EP - 172
AB - We show that if $X$ is a $\Sigma _1^1$ separable metrizable space which is not $\sigma $-compact then $C_p^* (X)$, the space of bounded real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _1^1$-complete. Assuming projective determinacy we show that if $X$ is projective not $\sigma $-compact and $n$ is least such that $X$ is $\Sigma _n^1$ then $C_p (X)$, the space of real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _n^1$-complete. We also prove a simultaneous improvement of theorems of Christensen and Kechris regarding the complexity of a subset of the hyperspace of the closed sets of a Polish space.
LA - eng
KW - Wadge hierarchy; function spaces; pointwise convergence; Wadge hierarchy; function spaces; pointwise convergence; analytic sets
UR - http://eudml.org/doc/248817
ER -
References
top- Cauty R., Dobrowolski T., Marciszewski W., A contribution to the topological classification of the spaces , Fund. Math. 142 (1993), 269-301. (1993) MR1220554
- Christensen J.P.R., Topology and Borel Structure, North-Holland, 1974. Zbl0273.28001MR0348724
- Dasgupta A., Studies in Borel Sets, Ph.D. thesis, University of California at Berkeley, 1994.
- Dijkstra J., Grilliot T., Lutzer D., van Mill J., Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710. (1985) Zbl0525.54010MR0792287
- Dobrowolski T., Marciszewski W., Classifications of function spaces with the pointwise topology determined by a countable dense set, Fund. Math. 148 (1995), 35-62. (1995) MR1354937
- Dobrowolski T., Marciszewski W., Mogilski J., On topological classification of function spaces of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324. (1991) MR1065602
- Engelking R., General Topology, Heldermann, 1989. Zbl0684.54001MR1039321
- Kechris A.S., Classical Descriptive Set Theory, Springer-Verlag, 1995. Zbl0819.04002MR1321597
- Kechris A.S., On the concept of -completeness, Proc. Amer. Math. Soc. 125 (1997), 1811-1814. (1997) Zbl0864.03034MR1372034
- Kechris A.S., Louveau A., Woodin W.H., The structure of -ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. (1987) Zbl0633.03043MR0879573
- Kuratowski K., Topology, vol. 1, Academic Press, 1966. MR0217751
- Lutzer D., van Mill J., Pol R., Descriptive complexity of function spaces, Trans. Amer. Math. Soc. 291 (1985), 121-128. (1985) Zbl0574.54042MR0797049
- Marciszewski W., On analytic and coanalytic function spaces , Topology Appl. 50 (1993), 241-248. (1993) MR1227552
- van Mill J., Infinite-Dimensional Topology, North-Holland, 1989. Zbl1027.57022MR0977744
- Okunev O., On analyticity in cosmic spaces, Comment. Math. Univ. Carolinae 34 (1993), 185-190. (1993) Zbl0837.54009MR1240216
- Wadge W., Reducibility and Determinateness on the Baire Space, Ph.D. thesis, University of California at Berkeley, 1983.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.