The period of a whirling pendulum
Mathematica Bohemica (2001)
- Volume: 126, Issue: 3, page 593-606
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLichardová, Hana. "The period of a whirling pendulum." Mathematica Bohemica 126.3 (2001): 593-606. <http://eudml.org/doc/248867>.
@article{Lichardová2001,
abstract = {The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point.},
author = {Lichardová, Hana},
journal = {Mathematica Bohemica},
keywords = {Hamiltonian system; period function; Picard-Fuchs equations; Hamiltonian system; period function; Picard-Fuchs equations},
language = {eng},
number = {3},
pages = {593-606},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The period of a whirling pendulum},
url = {http://eudml.org/doc/248867},
volume = {126},
year = {2001},
}
TY - JOUR
AU - Lichardová, Hana
TI - The period of a whirling pendulum
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 3
SP - 593
EP - 606
AB - The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point.
LA - eng
KW - Hamiltonian system; period function; Picard-Fuchs equations; Hamiltonian system; period function; Picard-Fuchs equations
UR - http://eudml.org/doc/248867
ER -
References
top- Bifurcation of limit cycle of a family of plane vector fields, Sel. Math. Sov. 1 (1981), 373–387. (1981)
- 10.1016/0022-0396(84)90022-6, J. Differ. Equations 53 (1984), 1–23. (1984) MR0747403DOI10.1016/0022-0396(84)90022-6
- 10.1016/0022-0396(87)90122-7, J. Differ. Equations 69 (1987), 310–321. (1987) Zbl0622.34033MR0903390DOI10.1016/0022-0396(87)90122-7
- 10.1016/0022-0396(86)90071-9, J. Differ. Equations 64 (1986), 51–66. (1986) MR0849664DOI10.1016/0022-0396(86)90071-9
- Methods of Bifurcation Theory, Springer, New York, 1996. (1996) MR0660633
- On the monotonicity of the period function of some second order equations, Časopis Pěst. Mat. 111 (1986), 14–25. (1986) MR0833153
- 10.1016/0022-0396(85)90156-1, J. Differ. Equations 59 (1985), 243–256. (1985) MR0804890DOI10.1016/0022-0396(85)90156-1
- Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1983. (1983) MR0709768
- Integral Calculus II, Academia, Praha, 1976. (Czech) (1976)
- Nichtlineare Mechanik, Springer, Berlin, 1958. (1958) Zbl0080.17409MR0145709
- 10.1023/A:1023080513150, Appl. Math. 44 (1999), 271–288. (1999) MR1698769DOI10.1023/A:1023080513150
- 10.1137/0527044, SIAM J. Math. Anal. 27 (1996), 823–834. (1996) MR1382835DOI10.1137/0527044
- 10.1137/0517039, SIAM J. Math. Anal. 17 (1986), 495–511. (1986) MR0838238DOI10.1137/0517039
- A Course of Modern Analysis, Cambridge at the University Press, Cambridge, 1927. (1927) MR1424469
- Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 1990. (1990) Zbl0701.58001MR1056699
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.