The period of a whirling pendulum

Hana Lichardová

Mathematica Bohemica (2001)

  • Volume: 126, Issue: 3, page 593-606
  • ISSN: 0862-7959

Abstract

top
The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point.

How to cite

top

Lichardová, Hana. "The period of a whirling pendulum." Mathematica Bohemica 126.3 (2001): 593-606. <http://eudml.org/doc/248867>.

@article{Lichardová2001,
abstract = {The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point.},
author = {Lichardová, Hana},
journal = {Mathematica Bohemica},
keywords = {Hamiltonian system; period function; Picard-Fuchs equations; Hamiltonian system; period function; Picard-Fuchs equations},
language = {eng},
number = {3},
pages = {593-606},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The period of a whirling pendulum},
url = {http://eudml.org/doc/248867},
volume = {126},
year = {2001},
}

TY - JOUR
AU - Lichardová, Hana
TI - The period of a whirling pendulum
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 3
SP - 593
EP - 606
AB - The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point.
LA - eng
KW - Hamiltonian system; period function; Picard-Fuchs equations; Hamiltonian system; period function; Picard-Fuchs equations
UR - http://eudml.org/doc/248867
ER -

References

top
  1. Bifurcation of limit cycle of a family of plane vector fields, Sel. Math. Sov. 1 (1981), 373–387. (1981) 
  2. 10.1016/0022-0396(84)90022-6, J. Differ. Equations 53 (1984), 1–23. (1984) MR0747403DOI10.1016/0022-0396(84)90022-6
  3. 10.1016/0022-0396(87)90122-7, J. Differ. Equations 69 (1987), 310–321. (1987) Zbl0622.34033MR0903390DOI10.1016/0022-0396(87)90122-7
  4. 10.1016/0022-0396(86)90071-9, J. Differ. Equations 64 (1986), 51–66. (1986) MR0849664DOI10.1016/0022-0396(86)90071-9
  5. Methods of Bifurcation Theory, Springer, New York, 1996. (1996) MR0660633
  6. On the monotonicity of the period function of some second order equations, Časopis Pěst. Mat. 111 (1986), 14–25. (1986) MR0833153
  7. 10.1016/0022-0396(85)90156-1, J. Differ. Equations 59 (1985), 243–256. (1985) MR0804890DOI10.1016/0022-0396(85)90156-1
  8. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1983. (1983) MR0709768
  9. Integral Calculus II, Academia, Praha, 1976. (Czech) (1976) 
  10. Nichtlineare Mechanik, Springer, Berlin, 1958. (1958) Zbl0080.17409MR0145709
  11. 10.1023/A:1023080513150, Appl. Math. 44 (1999), 271–288. (1999) MR1698769DOI10.1023/A:1023080513150
  12. 10.1137/0527044, SIAM J. Math. Anal. 27 (1996), 823–834. (1996) MR1382835DOI10.1137/0527044
  13. 10.1137/0517039, SIAM J. Math. Anal. 17 (1986), 495–511. (1986) MR0838238DOI10.1137/0517039
  14. A Course of Modern Analysis, Cambridge at the University Press, Cambridge, 1927. (1927) MR1424469
  15. Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 1990. (1990) Zbl0701.58001MR1056699

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.