Limit cycles in the equation of whirling pendulum with autonomous perturbation
Applications of Mathematics (1999)
- Volume: 44, Issue: 4, page 271-288
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLichardová, Hana. "Limit cycles in the equation of whirling pendulum with autonomous perturbation." Applications of Mathematics 44.4 (1999): 271-288. <http://eudml.org/doc/33034>.
@article{Lichardová1999,
abstract = {The two-parameter Hamiltonian system with the autonomous perturbation is considered. Via the Mel’nikov method, existence and uniqueness of a limit cycle of the system in a certain region of a two-dimensional space of parameters is proved.},
author = {Lichardová, Hana},
journal = {Applications of Mathematics},
keywords = {whirling pendulum; Hamiltonian system; autonomous perturbation; Melnikov function; limit cycle; homoclinic orbit; elliptic integral; whirling pendulum; Hamiltonian system; autonomous perturbation; Melnikov function; limit cycle; homoclinic orbit; elliptic integral},
language = {eng},
number = {4},
pages = {271-288},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Limit cycles in the equation of whirling pendulum with autonomous perturbation},
url = {http://eudml.org/doc/33034},
volume = {44},
year = {1999},
}
TY - JOUR
AU - Lichardová, Hana
TI - Limit cycles in the equation of whirling pendulum with autonomous perturbation
JO - Applications of Mathematics
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 4
SP - 271
EP - 288
AB - The two-parameter Hamiltonian system with the autonomous perturbation is considered. Via the Mel’nikov method, existence and uniqueness of a limit cycle of the system in a certain region of a two-dimensional space of parameters is proved.
LA - eng
KW - whirling pendulum; Hamiltonian system; autonomous perturbation; Melnikov function; limit cycle; homoclinic orbit; elliptic integral; whirling pendulum; Hamiltonian system; autonomous perturbation; Melnikov function; limit cycle; homoclinic orbit; elliptic integral
UR - http://eudml.org/doc/33034
ER -
References
top- Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer Verlag, New York, Heidelberg, Berlin, 1983. (1983) MR0709768
- 10.1137/0523087, SIAM J. Math. Anal. 23(6) (1992), 1577–1608. (1992) Zbl0765.58018MR1185642DOI10.1137/0523087
- On bifurcation of limit cycles from centers, Lecture Notes in Math., 1455, 1991, pp. 20–43. (1991) MR1094376
- Nichtlineare mechanik, Springer Verlag, Berlin, Gottingen, Heidelberg, 1958. (1958) Zbl0080.17409MR0145709
- 10.1006/jdeq.1996.0017, Journal of Differential Equations 124 (1996), 407–424. (1996) MR1370149DOI10.1006/jdeq.1996.0017
- On limit cycles and chaos in equations of pendulum type, Prikladnaja matematika i mechanika 53(5) (1989), 721–730. (Russian) (1989) MR1040438
- 10.1137/0527044, Siam J. Math. Anal. 27(3) (1996), 823–834. (1996) MR1382835DOI10.1137/0527044
- 10.1137/0517039, SIAM J. Math. Anal. 17(3) (1986), 495–511. (1986) MR0838238DOI10.1137/0517039
- A Course of Modern Analysis, Cambridge at the University Press, 1927. (1927) MR1424469
- Global Bifurcations and Chaos: Analytical Methods, Springer Verlag, New York, Heidelberg, Berlin, 1988. (1988) Zbl0661.58001MR0956468
- Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer Verlag, New York, Heidelberg, Berlin, 1990. (1990) Zbl0701.58001MR1056699
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.