Limit cycles in the equation of whirling pendulum with autonomous perturbation

Hana Lichardová

Applications of Mathematics (1999)

  • Volume: 44, Issue: 4, page 271-288
  • ISSN: 0862-7940

Abstract

top
The two-parameter Hamiltonian system with the autonomous perturbation is considered. Via the Mel’nikov method, existence and uniqueness of a limit cycle of the system in a certain region of a two-dimensional space of parameters is proved.

How to cite

top

Lichardová, Hana. "Limit cycles in the equation of whirling pendulum with autonomous perturbation." Applications of Mathematics 44.4 (1999): 271-288. <http://eudml.org/doc/33034>.

@article{Lichardová1999,
abstract = {The two-parameter Hamiltonian system with the autonomous perturbation is considered. Via the Mel’nikov method, existence and uniqueness of a limit cycle of the system in a certain region of a two-dimensional space of parameters is proved.},
author = {Lichardová, Hana},
journal = {Applications of Mathematics},
keywords = {whirling pendulum; Hamiltonian system; autonomous perturbation; Melnikov function; limit cycle; homoclinic orbit; elliptic integral; whirling pendulum; Hamiltonian system; autonomous perturbation; Melnikov function; limit cycle; homoclinic orbit; elliptic integral},
language = {eng},
number = {4},
pages = {271-288},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Limit cycles in the equation of whirling pendulum with autonomous perturbation},
url = {http://eudml.org/doc/33034},
volume = {44},
year = {1999},
}

TY - JOUR
AU - Lichardová, Hana
TI - Limit cycles in the equation of whirling pendulum with autonomous perturbation
JO - Applications of Mathematics
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 4
SP - 271
EP - 288
AB - The two-parameter Hamiltonian system with the autonomous perturbation is considered. Via the Mel’nikov method, existence and uniqueness of a limit cycle of the system in a certain region of a two-dimensional space of parameters is proved.
LA - eng
KW - whirling pendulum; Hamiltonian system; autonomous perturbation; Melnikov function; limit cycle; homoclinic orbit; elliptic integral; whirling pendulum; Hamiltonian system; autonomous perturbation; Melnikov function; limit cycle; homoclinic orbit; elliptic integral
UR - http://eudml.org/doc/33034
ER -

References

top
  1. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer Verlag, New York, Heidelberg, Berlin, 1983. (1983) MR0709768
  2. 10.1137/0523087, SIAM J. Math. Anal. 23(6) (1992), 1577–1608. (1992) Zbl0765.58018MR1185642DOI10.1137/0523087
  3. On bifurcation of limit cycles from centers, Lecture Notes in Math., 1455, 1991, pp. 20–43. (1991) MR1094376
  4. Nichtlineare mechanik, Springer Verlag, Berlin, Gottingen, Heidelberg, 1958. (1958) Zbl0080.17409MR0145709
  5. 10.1006/jdeq.1996.0017, Journal of Differential Equations 124 (1996), 407–424. (1996) MR1370149DOI10.1006/jdeq.1996.0017
  6. On limit cycles and chaos in equations of pendulum type, Prikladnaja matematika i mechanika 53(5) (1989), 721–730. (Russian) (1989) MR1040438
  7. 10.1137/0527044, Siam J. Math. Anal. 27(3) (1996), 823–834. (1996) MR1382835DOI10.1137/0527044
  8. 10.1137/0517039, SIAM J. Math. Anal. 17(3) (1986), 495–511. (1986) MR0838238DOI10.1137/0517039
  9. A Course of Modern Analysis, Cambridge at the University Press, 1927. (1927) MR1424469
  10. Global Bifurcations and Chaos: Analytical Methods, Springer Verlag, New York, Heidelberg, Berlin, 1988. (1988) Zbl0661.58001MR0956468
  11. Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer Verlag, New York, Heidelberg, Berlin, 1990. (1990) Zbl0701.58001MR1056699

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.