Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem

Maurice M. Dodson

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 2, page 425-437
  • ISSN: 1246-7405

Abstract

top
Sampling theory for multi-band signals is shown to have a logical structure similar to that of Fourier analysis.

How to cite

top

Dodson, Maurice M.. "Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem." Journal de théorie des nombres de Bordeaux 14.2 (2002): 425-437. <http://eudml.org/doc/248889>.

@article{Dodson2002,
abstract = {Sampling theory for multi-band signals is shown to have a logical structure similar to that of Fourier analysis.},
author = {Dodson, Maurice M.},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {425-437},
publisher = {Université Bordeaux I},
title = {Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem},
url = {http://eudml.org/doc/248889},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Dodson, Maurice M.
TI - Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 425
EP - 437
AB - Sampling theory for multi-band signals is shown to have a logical structure similar to that of Fourier analysis.
LA - eng
UR - http://eudml.org/doc/248889
ER -

References

top
  1. [1] M.G. Beaty, M.M. Dodson, Abstract harmonic analysis and the sampling theorem. In Sampling theory in Fourier and signal analysis:Advanced topics (eds. J. R. Higgins and R. L. Stens), Oxford University Press, 1999, 233-265. 
  2. [2] M.G. Beaty, M.M. Dodson, Shannon's sampling theorem, Plancherrel's theorem and spectral translates, preprint, University of York, 2002. 
  3. [3] M.G. Beaty, M.M. Dodson, Shannon's sampling theorem and abstract harmonic analysis, preprint, University of York, 2002. 
  4. [4] M.G. Beaty, M.M. Dodson, J.R. Higgins, Approximating Paley-Wiener functions by smoothed step functions. J. Approx. Theory78 (1994), 433-445. Zbl0807.41011MR1292971
  5. [5] M.G. Beaty, J.R. Higgins, Aliasing and Poisson summation in the sampling theory of Paley-Wiener spaces. J. Fourier Anal. Appl.1 (1994), 67-85. Zbl0839.94002MR1307069
  6. [6] P.L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition3 (1983), 185-212. Zbl0523.94003MR724869
  7. [7] P.L. Butzer, A. Gessinger, The approximate sampling theorem, Poisson's sum formula, a decomposition theorem for Parseval's equation and their interconnections. In The Heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of T. J. Rivlin, Ann. Numer. Math.4 (1997), 143-160. Zbl0928.42022MR1422676
  8. [8] P.L. Butzer, M. Hauss, R.L. Stens, The sampling theorem and its unique role in various branches of mathematics. Mitt. Math. Ges. Hamburg12 (1991), 523-527. Zbl0824.94007MR1144805
  9. [9] P.L. Butzer, J.R. Higg, R.L. Stens, Sampling theory of signal analysis. In: Development of mathematics 1950-2000, Birkhäuser, Basel, 2002, 193-234. Zbl0961.94009MR1796842
  10. [10] P.L. Butzer, G. Schmeisser, R.L. Stens, An Introduction to Sampling Analysis. In: Nonuniform Sampling, Theory and Practice (ed. F. Marvasti), Kluwer Academic/Plenum Publishers, New York, 2000, Chapter 2, 17-121. MR1875676
  11. [11] M.M. Dodson, A.M. Silva, Fourier analysis and the sampling theorem, Proc. Royal Irish Acad.85A (1985), 81-108. Zbl0583.42003MR821425
  12. [12] M.M. Dodson, A.M. Silva, V. Soucek, A note on Whittaker's cardinal series in harmonic analysis. Proc. Edinb. Math. Soc.29 (1986), 349-357. Zbl0616.43006MR865268
  13. [13] S. Goldman, Information Theory. Dover, New York, 1968. Zbl1154.94348
  14. [14] J.R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc.12 (1985), 45-89. Zbl0562.42002MR766960
  15. [15] J.R. Higgins, Sampling theory in Fourier and signal analysis: Foundations. Clarendon Press, Oxford, 1996. Zbl0872.94010
  16. [16] J.R. Higgins, G. Schmeisser, J.J. Voss, The sampling theorem and several equivalent results in analysis. J. Comput. Anal. Appl.2 (2000) 333-371. Zbl1030.41010MR1793189
  17. [17] A.J. Jerri, The Shannon sampling theorem - its various extensions and applications: a tutorial review. Proc. IEEE65 (1977), 1565-1596. Zbl0442.94002
  18. [18] I. Kluvánek, Sampling theorem in abstract harmonic analysis. Mat.-Fyz. Gasopis Sloven. Akad. Vied.15 (1965), 43-48. Zbl0154.44403MR188717
  19. [19] K.S. Krishnan, A simple result in quadrature. Nature162 (1948), 215. Zbl0030.16301MR25613
  20. [20] S.P. Lloyd, A sampling theorem for stationary (wide sense) stochastic processes. Trans. Amer. Math. Soc.92 (1959), 1-12. Zbl0106.11902MR107301
  21. [21] R. J. MARKS II (ed.), Advanced topics in Shannon sampling and interpolation theory. Springer-Verlag, New York, 1993. Zbl0905.94002MR1221743
  22. [22] Q.I. Rahman, G. Schmeisser, The summation formulae of Poisson, Plana, Euler-Maclaurin and their relationship. J. Math. Sci.28 (1994), 151-171. Zbl1019.65500
  23. [23] C.E. Shannon, A mathematical theory of communication. Bell System Tech. J.27 (1948), 379-423, 623-656. Zbl1154.94303MR26286
  24. [24] C.E. Shannon, Communication in the presence of noise. Proc. IRE37 (1949), 10-21. MR28549
  25. [25] E.T. Whittaker, On the functions which are represented by the expansions of the interpolation theory. Proc. Roy. Soc. Edinburgh, 35 (1915), 181-194. Zbl45.0553.02JFM45.1275.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.