Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 2, page 425-437
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDodson, Maurice M.. "Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem." Journal de théorie des nombres de Bordeaux 14.2 (2002): 425-437. <http://eudml.org/doc/248889>.
@article{Dodson2002,
abstract = {Sampling theory for multi-band signals is shown to have a logical structure similar to that of Fourier analysis.},
author = {Dodson, Maurice M.},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {425-437},
publisher = {Université Bordeaux I},
title = {Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem},
url = {http://eudml.org/doc/248889},
volume = {14},
year = {2002},
}
TY - JOUR
AU - Dodson, Maurice M.
TI - Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 425
EP - 437
AB - Sampling theory for multi-band signals is shown to have a logical structure similar to that of Fourier analysis.
LA - eng
UR - http://eudml.org/doc/248889
ER -
References
top- [1] M.G. Beaty, M.M. Dodson, Abstract harmonic analysis and the sampling theorem. In Sampling theory in Fourier and signal analysis:Advanced topics (eds. J. R. Higgins and R. L. Stens), Oxford University Press, 1999, 233-265.
- [2] M.G. Beaty, M.M. Dodson, Shannon's sampling theorem, Plancherrel's theorem and spectral translates, preprint, University of York, 2002.
- [3] M.G. Beaty, M.M. Dodson, Shannon's sampling theorem and abstract harmonic analysis, preprint, University of York, 2002.
- [4] M.G. Beaty, M.M. Dodson, J.R. Higgins, Approximating Paley-Wiener functions by smoothed step functions. J. Approx. Theory78 (1994), 433-445. Zbl0807.41011MR1292971
- [5] M.G. Beaty, J.R. Higgins, Aliasing and Poisson summation in the sampling theory of Paley-Wiener spaces. J. Fourier Anal. Appl.1 (1994), 67-85. Zbl0839.94002MR1307069
- [6] P.L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition3 (1983), 185-212. Zbl0523.94003MR724869
- [7] P.L. Butzer, A. Gessinger, The approximate sampling theorem, Poisson's sum formula, a decomposition theorem for Parseval's equation and their interconnections. In The Heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of T. J. Rivlin, Ann. Numer. Math.4 (1997), 143-160. Zbl0928.42022MR1422676
- [8] P.L. Butzer, M. Hauss, R.L. Stens, The sampling theorem and its unique role in various branches of mathematics. Mitt. Math. Ges. Hamburg12 (1991), 523-527. Zbl0824.94007MR1144805
- [9] P.L. Butzer, J.R. Higg, R.L. Stens, Sampling theory of signal analysis. In: Development of mathematics 1950-2000, Birkhäuser, Basel, 2002, 193-234. Zbl0961.94009MR1796842
- [10] P.L. Butzer, G. Schmeisser, R.L. Stens, An Introduction to Sampling Analysis. In: Nonuniform Sampling, Theory and Practice (ed. F. Marvasti), Kluwer Academic/Plenum Publishers, New York, 2000, Chapter 2, 17-121. MR1875676
- [11] M.M. Dodson, A.M. Silva, Fourier analysis and the sampling theorem, Proc. Royal Irish Acad.85A (1985), 81-108. Zbl0583.42003MR821425
- [12] M.M. Dodson, A.M. Silva, V. Soucek, A note on Whittaker's cardinal series in harmonic analysis. Proc. Edinb. Math. Soc.29 (1986), 349-357. Zbl0616.43006MR865268
- [13] S. Goldman, Information Theory. Dover, New York, 1968. Zbl1154.94348
- [14] J.R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc.12 (1985), 45-89. Zbl0562.42002MR766960
- [15] J.R. Higgins, Sampling theory in Fourier and signal analysis: Foundations. Clarendon Press, Oxford, 1996. Zbl0872.94010
- [16] J.R. Higgins, G. Schmeisser, J.J. Voss, The sampling theorem and several equivalent results in analysis. J. Comput. Anal. Appl.2 (2000) 333-371. Zbl1030.41010MR1793189
- [17] A.J. Jerri, The Shannon sampling theorem - its various extensions and applications: a tutorial review. Proc. IEEE65 (1977), 1565-1596. Zbl0442.94002
- [18] I. Kluvánek, Sampling theorem in abstract harmonic analysis. Mat.-Fyz. Gasopis Sloven. Akad. Vied.15 (1965), 43-48. Zbl0154.44403MR188717
- [19] K.S. Krishnan, A simple result in quadrature. Nature162 (1948), 215. Zbl0030.16301MR25613
- [20] S.P. Lloyd, A sampling theorem for stationary (wide sense) stochastic processes. Trans. Amer. Math. Soc.92 (1959), 1-12. Zbl0106.11902MR107301
- [21] R. J. MARKS II (ed.), Advanced topics in Shannon sampling and interpolation theory. Springer-Verlag, New York, 1993. Zbl0905.94002MR1221743
- [22] Q.I. Rahman, G. Schmeisser, The summation formulae of Poisson, Plana, Euler-Maclaurin and their relationship. J. Math. Sci.28 (1994), 151-171. Zbl1019.65500
- [23] C.E. Shannon, A mathematical theory of communication. Bell System Tech. J.27 (1948), 379-423, 623-656. Zbl1154.94303MR26286
- [24] C.E. Shannon, Communication in the presence of noise. Proc. IRE37 (1949), 10-21. MR28549
- [25] E.T. Whittaker, On the functions which are represented by the expansions of the interpolation theory. Proc. Roy. Soc. Edinburgh, 35 (1915), 181-194. Zbl45.0553.02JFM45.1275.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.