Stability of the geodesic flow for the energy
Eric Boeckx; José Carmelo González-Dávila; Lieven Vanhecke
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 2, page 201-213
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBoeckx, Eric, González-Dávila, José Carmelo, and Vanhecke, Lieven. "Stability of the geodesic flow for the energy." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 201-213. <http://eudml.org/doc/248991>.
@article{Boeckx2002,
abstract = {We study the stability of the geodesic flow $\xi $ as a critical point for the energy functional when the base space is a compact orientable quotient of a two-point homogeneous space.},
author = {Boeckx, Eric, González-Dávila, José Carmelo, Vanhecke, Lieven},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {geodesic flow; two-point homogeneous spaces; harmonic maps; stability; energy functional; geodesic flow; two-point homogeneous spaces; harmonic maps; stability; energy functional},
language = {eng},
number = {2},
pages = {201-213},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Stability of the geodesic flow for the energy},
url = {http://eudml.org/doc/248991},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Boeckx, Eric
AU - González-Dávila, José Carmelo
AU - Vanhecke, Lieven
TI - Stability of the geodesic flow for the energy
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 201
EP - 213
AB - We study the stability of the geodesic flow $\xi $ as a critical point for the energy functional when the base space is a compact orientable quotient of a two-point homogeneous space.
LA - eng
KW - geodesic flow; two-point homogeneous spaces; harmonic maps; stability; energy functional; geodesic flow; two-point homogeneous spaces; harmonic maps; stability; energy functional
UR - http://eudml.org/doc/248991
ER -
References
top- Boeckx E., Vanhecke L., Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427-448. (1997) Zbl0897.53010MR1690045
- Boeckx E., Vanhecke L., Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), 77-93. (2000) Zbl0973.53053MR1775222
- Borel A., Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111-122. (1963) Zbl0116.38603MR0146301
- Brito F., Total bending of flows with mean curvature correction, Differential Geom. Appl. 12 (2000), 157-163. (2000) Zbl0995.53023MR1758847
- Chen B.Y., Vanhecke L., Differential geometry of geodesic spheres, J. Reine Angew. Math. 25 (1981), 28-67. (1981) Zbl0503.53013MR0618545
- González-Dávila J.C., Vanhecke L., Energy and volume of unit vector fields on three-dimensional Riemannian manifolds, Differential Geom. Appl., to appear. MR1900746
- Gray A., Vanhecke L., Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198. (1979) Zbl0428.53017MR0521460
- Higuchi A., Kay B.S., Wood C.M., The energy of unit vector fields on the -sphere, J. Geom. Phys. 37 (2002), 137-155. (2002) MR1807086
- Milnor J., Curvature of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293-329. (1976) MR0425012
- Tricerri F., Vanhecke L., Homogeneous Structures on Riemannian Manifolds, Lecture Note Series London Math. Soc. 83, Cambridge Univ. Press, 1983. Zbl0641.53047MR0712664
- Watanabe Y., Integral inequalities in compact orientable manifolds, Riemannian or Kählerian, Kōdai Math. Sem. Rep. 20 (1968), 264-271. (1968) MR0248702
- Wiegmink G., Total bending of vector fields on Riemannian manifolds, Math. Ann. 303 (1995), 325-344. (1995) Zbl0834.53034MR1348803
- Wiegmink G., Total bending of vector fields on the sphere , Differential Geom. Appl. 6 (1996), 219-236. (1996) MR1408308
- Wood C.M., On the energy of a unit vector field, Geom. Dedicata 64 (1997), 319-330. (1997) Zbl0878.58017MR1440565
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.