Modularity of Galois representations
Journal de théorie des nombres de Bordeaux (2003)
- Volume: 15, Issue: 1, page 367-381
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSkinner, Chris. "Modularity of Galois representations." Journal de théorie des nombres de Bordeaux 15.1 (2003): 367-381. <http://eudml.org/doc/249087>.
@article{Skinner2003,
abstract = {This paper is essentially the text of the author’s lecture at the 2001 Journées Arithmétiques. It addresses the problem of identifying in Galois-theoretic terms those two-dimensional, $p$-adic Galois representations associated to holomorphic Hilbert modular newforms.},
author = {Skinner, Chris},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Galois representations; modularity},
language = {eng},
number = {1},
pages = {367-381},
publisher = {Université Bordeaux I},
title = {Modularity of Galois representations},
url = {http://eudml.org/doc/249087},
volume = {15},
year = {2003},
}
TY - JOUR
AU - Skinner, Chris
TI - Modularity of Galois representations
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 367
EP - 381
AB - This paper is essentially the text of the author’s lecture at the 2001 Journées Arithmétiques. It addresses the problem of identifying in Galois-theoretic terms those two-dimensional, $p$-adic Galois representations associated to holomorphic Hilbert modular newforms.
LA - eng
KW - Galois representations; modularity
UR - http://eudml.org/doc/249087
ER -
References
top- [BR] D. Blasius, J. Rogawski, Motives for Hilbert modular forms. Invent. Math.114 (1993), no. 1, 55-87. Zbl0829.11028MR1235020
- [BCDT] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc.14 (2001), no. 4, 843-939. [BDST] K. Buzzard, M. Dickinson, N. Shepherd-Barron, R. Taylor, On icosahedral Artin representations. Duke Math. J.109 (2001), no. 2, 283-318. Zbl0982.11033MR1839918
- [BT] K. Buzzard, R. Taylor, Companion forms and weight one forms. Ann. of Math.149 (1999), no. 3, 905-919. Zbl0965.11019MR1709306
- [CDT] B. Conrad, F. Diamond, R. Taylor, Modularity of certain potentially Barsotti-Tate Galois representations. J. Amer. Math. Soc.12 (1999), no. 2, 521-567. Zbl0923.11085MR1639612
- [DRS] B. De Smit, K. Rubin, R. Schoof, Criteria for complete intersections. In: Modular forms and Fermat's Last Theorem, 343-356, Springer, 1997. Zbl0903.13003MR1638484
- [D1] F. Diamond, On deformation rings and Hecke rings. Ann. of Math. (2) 144 (1996), no. 1, 137-166. Zbl0867.11032MR1405946
- [D2] F. Diamond, The refined conjecture of Serre. In: Elliptic Curves, Modular forms, and Fermat's Last Theorem (ed. J. Coates), International Press, Cambridge, MA, 1995. Zbl0853.11031MR1363493
- [D3] F. Diamond, The Taylor-Wiles construction and multiplicity one. Invent. Math.128 (1997), no. 2, 379-391. Zbl0916.11037MR1440309
- [Di] M. Dickinson, On the modularity of certain 2-adic Galois representations. Duke Math. J.109 (2001), no. 2, 319-382. Zbl1015.11020MR1845182
- [ES] J. Ellenborg, C. Skinner, On the modularity of Q-curves. Duke Math. J.109 (2001), no. 1, 97-122. Zbl1009.11038MR1844206
- [Fo] J.-M. Fontaine, Représentations l-adiques potentiellement semi-stables. In: Périodes p-adiques, Asterisque223 (1994) 321-247. Zbl0873.14020MR1293977
- [FoM] J.-M. Fontaine, B. Mazur, Geometric Galois representations. In: Elliptic Curves, modular forms, and Fermat's Last Theorem (Hong Kong, 1993), pp. 41-78, Internat. Press, 1995. Zbl0839.14011MR1363495
- [F1] K. Fujiwara, Deformation rings and Hecke algebras in the totally real case, preprint (1996).
- [F2] K. Fujiwara, Deformation rings and Hecke algebras in the totally real case, preprint (1999).
- [F3] K. Fujiwara, it Level optimazation in the totally real case, preprint (1999).
- [H1] H. Hida, On nearly ordinary Hecke algebras for GL(2) over totally real fields. In: Algebraic number theory, Adv. Stud. Pure Math.17, 139-169, Academic Press, 1989. Zbl0742.11026MR1097614
- [H2] H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables. In: Algebraic analysis, geometry, and number theory (Baltimore, MD1988), 115-138, John Hopkins Univ. Press, 1989. Zbl0782.11017MR1463699
- [J] F. Jarvis, Level lowering for modular mod representations over totally real fields. Math. Ann.313 (1999), 141-160. Zbl0978.11020MR1666809
- [M1] B. Mazur, Deforming Galois representations. In: Galois Groups over Q, vol. 16, MSRI Publications, Springer, 1989. Zbl0714.11076MR1012172
- [M2] B. Mazur, An introduction to the deformation theory of Galois representations. In: Modular Forms and Fermat's Last Theorem (eds. G. Cornell et al.), Springer-Verlag, New York, 1997. Zbl0901.11015MR1638481
- [Ra] A. Rajaei, On lowering the levels in modular mod Galois representations of totally real fields. Thesis, Princeton University, 1998.
- [SW1] C. Skinner, A. Wiles, Ordinary representations and modular forms. Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 20, 10520-10527. Zbl0924.11044MR1471466
- [SW2] C. Skinner, A. Wiles, Modular forms and residually reducible representations. Publ. Math. IHES89 (1999), 5-126. Zbl1005.11030MR1793414
- [SW3] C. Skinner, A. Wiles, Base change and a problem of Serre. Duke Math. J.107 (2001), no. 1, 15-25. Zbl1016.11017MR1815248
- [SW4] C. Skinner, A. Wiles, Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), no. 1, 185-215. Zbl1024.11036MR1928993
- [Ta] J. Tate, Number theoretic background. In: Automorphic forms, representations and L-functions, Part 2, Proc. Sympos. Pure Math., XXXIII, pp. 3-26, Amer. Math. Soc., Providence, R.I., 1979. Zbl0422.12007MR546607
- [T] R. Taylor, On Galois representations associated to Hilbert modular forms. In: Elliptic Curves, Modular forms, and Fermat's Last Theorem (ed. J. Coates), International Press, Cambridge, MA, 1995. Zbl0836.11017
- [TW] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553-572. Zbl0823.11030MR1333036
- [Wa] L. Washington, The non-p-part of the class number in a cyclotomic Zp-extension. Invent. Math.49 (1978), no. 1, 87-97. Zbl0403.12007MR511097
- [W1] A. Wiles, Modular elliptic curves and Fermat's Last Theorem. Ann. of Math. (2) 142 (1995), 443-551. Zbl0823.11029MR1333035
- [W2] A. WilesOn ordinary λ-adic representations associated to modular forms. Invent. Math.94 (1988), no. 3, 529-573. Zbl0664.10013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.