Modularity of Galois representations

Chris Skinner

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 367-381
  • ISSN: 1246-7405

Abstract

top
This paper is essentially the text of the author’s lecture at the 2001 Journées Arithmétiques. It addresses the problem of identifying in Galois-theoretic terms those two-dimensional, p -adic Galois representations associated to holomorphic Hilbert modular newforms.

How to cite

top

Skinner, Chris. "Modularity of Galois representations." Journal de théorie des nombres de Bordeaux 15.1 (2003): 367-381. <http://eudml.org/doc/249087>.

@article{Skinner2003,
abstract = {This paper is essentially the text of the author’s lecture at the 2001 Journées Arithmétiques. It addresses the problem of identifying in Galois-theoretic terms those two-dimensional, $p$-adic Galois representations associated to holomorphic Hilbert modular newforms.},
author = {Skinner, Chris},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Galois representations; modularity},
language = {eng},
number = {1},
pages = {367-381},
publisher = {Université Bordeaux I},
title = {Modularity of Galois representations},
url = {http://eudml.org/doc/249087},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Skinner, Chris
TI - Modularity of Galois representations
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 367
EP - 381
AB - This paper is essentially the text of the author’s lecture at the 2001 Journées Arithmétiques. It addresses the problem of identifying in Galois-theoretic terms those two-dimensional, $p$-adic Galois representations associated to holomorphic Hilbert modular newforms.
LA - eng
KW - Galois representations; modularity
UR - http://eudml.org/doc/249087
ER -

References

top
  1. [BR] D. Blasius, J. Rogawski, Motives for Hilbert modular forms. Invent. Math.114 (1993), no. 1, 55-87. Zbl0829.11028MR1235020
  2. [BCDT] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc.14 (2001), no. 4, 843-939. [BDST] K. Buzzard, M. Dickinson, N. Shepherd-Barron, R. Taylor, On icosahedral Artin representations. Duke Math. J.109 (2001), no. 2, 283-318. Zbl0982.11033MR1839918
  3. [BT] K. Buzzard, R. Taylor, Companion forms and weight one forms. Ann. of Math.149 (1999), no. 3, 905-919. Zbl0965.11019MR1709306
  4. [CDT] B. Conrad, F. Diamond, R. Taylor, Modularity of certain potentially Barsotti-Tate Galois representations. J. Amer. Math. Soc.12 (1999), no. 2, 521-567. Zbl0923.11085MR1639612
  5. [DRS] B. De Smit, K. Rubin, R. Schoof, Criteria for complete intersections. In: Modular forms and Fermat's Last Theorem, 343-356, Springer, 1997. Zbl0903.13003MR1638484
  6. [D1] F. Diamond, On deformation rings and Hecke rings. Ann. of Math. (2) 144 (1996), no. 1, 137-166. Zbl0867.11032MR1405946
  7. [D2] F. Diamond, The refined conjecture of Serre. In: Elliptic Curves, Modular forms, and Fermat's Last Theorem (ed. J. Coates), International Press, Cambridge, MA, 1995. Zbl0853.11031MR1363493
  8. [D3] F. Diamond, The Taylor-Wiles construction and multiplicity one. Invent. Math.128 (1997), no. 2, 379-391. Zbl0916.11037MR1440309
  9. [Di] M. Dickinson, On the modularity of certain 2-adic Galois representations. Duke Math. J.109 (2001), no. 2, 319-382. Zbl1015.11020MR1845182
  10. [ES] J. Ellenborg, C. Skinner, On the modularity of Q-curves. Duke Math. J.109 (2001), no. 1, 97-122. Zbl1009.11038MR1844206
  11. [Fo] J.-M. Fontaine, Représentations l-adiques potentiellement semi-stables. In: Périodes p-adiques, Asterisque223 (1994) 321-247. Zbl0873.14020MR1293977
  12. [FoM] J.-M. Fontaine, B. Mazur, Geometric Galois representations. In: Elliptic Curves, modular forms, and Fermat's Last Theorem (Hong Kong, 1993), pp. 41-78, Internat. Press, 1995. Zbl0839.14011MR1363495
  13. [F1] K. Fujiwara, Deformation rings and Hecke algebras in the totally real case, preprint (1996). 
  14. [F2] K. Fujiwara, Deformation rings and Hecke algebras in the totally real case, preprint (1999). 
  15. [F3] K. Fujiwara, it Level optimazation in the totally real case, preprint (1999). 
  16. [H1] H. Hida, On nearly ordinary Hecke algebras for GL(2) over totally real fields. In: Algebraic number theory, Adv. Stud. Pure Math.17, 139-169, Academic Press, 1989. Zbl0742.11026MR1097614
  17. [H2] H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables. In: Algebraic analysis, geometry, and number theory (Baltimore, MD1988), 115-138, John Hopkins Univ. Press, 1989. Zbl0782.11017MR1463699
  18. [J] F. Jarvis, Level lowering for modular mod representations over totally real fields. Math. Ann.313 (1999), 141-160. Zbl0978.11020MR1666809
  19. [M1] B. Mazur, Deforming Galois representations. In: Galois Groups over Q, vol. 16, MSRI Publications, Springer, 1989. Zbl0714.11076MR1012172
  20. [M2] B. Mazur, An introduction to the deformation theory of Galois representations. In: Modular Forms and Fermat's Last Theorem (eds. G. Cornell et al.), Springer-Verlag, New York, 1997. Zbl0901.11015MR1638481
  21. [Ra] A. Rajaei, On lowering the levels in modular mod Galois representations of totally real fields. Thesis, Princeton University, 1998. 
  22. [SW1] C. Skinner, A. Wiles, Ordinary representations and modular forms. Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 20, 10520-10527. Zbl0924.11044MR1471466
  23. [SW2] C. Skinner, A. Wiles, Modular forms and residually reducible representations. Publ. Math. IHES89 (1999), 5-126. Zbl1005.11030MR1793414
  24. [SW3] C. Skinner, A. Wiles, Base change and a problem of Serre. Duke Math. J.107 (2001), no. 1, 15-25. Zbl1016.11017MR1815248
  25. [SW4] C. Skinner, A. Wiles, Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), no. 1, 185-215. Zbl1024.11036MR1928993
  26. [Ta] J. Tate, Number theoretic background. In: Automorphic forms, representations and L-functions, Part 2, Proc. Sympos. Pure Math., XXXIII, pp. 3-26, Amer. Math. Soc., Providence, R.I., 1979. Zbl0422.12007MR546607
  27. [T] R. Taylor, On Galois representations associated to Hilbert modular forms. In: Elliptic Curves, Modular forms, and Fermat's Last Theorem (ed. J. Coates), International Press, Cambridge, MA, 1995. Zbl0836.11017
  28. [TW] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553-572. Zbl0823.11030MR1333036
  29. [Wa] L. Washington, The non-p-part of the class number in a cyclotomic Zp-extension. Invent. Math.49 (1978), no. 1, 87-97. Zbl0403.12007MR511097
  30. [W1] A. Wiles, Modular elliptic curves and Fermat's Last Theorem. Ann. of Math. (2) 142 (1995), 443-551. Zbl0823.11029MR1333035
  31. [W2] A. WilesOn ordinary λ-adic representations associated to modular forms. Invent. Math.94 (1988), no. 3, 529-573. Zbl0664.10013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.