Residually reductible representations and modular forms
Publications Mathématiques de l'IHÉS (1999)
- Volume: 89, page 5-126
- ISSN: 0073-8301
Access Full Article
topHow to cite
topSkinner, C.M., and Wiles, Andrew J.. "Residually reductible representations and modular forms." Publications Mathématiques de l'IHÉS 89 (1999): 5-126. <http://eudml.org/doc/104160>.
@article{Skinner1999,
author = {Skinner, C.M., Wiles, Andrew J.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {modularity; two-dimensional Galois representations; universal deformation rings; Hecke rings},
language = {eng},
pages = {5-126},
publisher = {Institut des Hautes Études Scientifiques},
title = {Residually reductible representations and modular forms},
url = {http://eudml.org/doc/104160},
volume = {89},
year = {1999},
}
TY - JOUR
AU - Skinner, C.M.
AU - Wiles, Andrew J.
TI - Residually reductible representations and modular forms
JO - Publications Mathématiques de l'IHÉS
PY - 1999
PB - Institut des Hautes Études Scientifiques
VL - 89
SP - 5
EP - 126
LA - eng
KW - modularity; two-dimensional Galois representations; universal deformation rings; Hecke rings
UR - http://eudml.org/doc/104160
ER -
References
top- [C] H. CARAYOL, Sur les représentations ℓ-adiques associées aux formes modulaires de Hilbert, Ann. Sci. Ec. Norm. Sup. IV, Ser. 19 (1986), 409-468. Zbl0616.10025MR89c:11083
- [Ca] P. CARTIER, La conjecture locale de Langlands pour GL(2) et la démonstration de Ph. Kutzko, in Bourbaki Seminar, Vol. 1979/1980, Lecture Notes in Math., 842, Springer, (1981), 112-138. Zbl0498.12013MR83c:12017
- [Ch] C.-L. CHAI, Arithmetic minimal compactification of the Hilbert-Blumenthal moduli spaces, Ann. of Math. (2) 131 (1990), no. 3, 541-554. Zbl0754.14030MR91i:11063
- [Co] J. COATES, p-adic L-functions and Iwasawa's theory, in Algebraic number fields : L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press (1977), 269-353. Zbl0393.12027MR57 #276
- [De] P. DELIGNE, Formes modulaires et représentations de GL(2), in Modular functions of one variable, II, Lecture Notes in Math., 349, Springer, (1973), 55-105. Zbl0271.10032MR50 #240
- [D-R] P. DELIGNE, K. RIBET, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), no. 3, 227-286. Zbl0434.12009MR81m:12019
- [DRS] B. DE SMIT, K. RUBIN, R. SCHOOF, Criteria for complete intersections, in Modular forms and Fermat's Last Theorem, Springer (1997), 343-356. Zbl0903.13003MR1638484
- [D1] F. DIAMOND, On deformation rings and Hecke rings, Ann. of Math. (2), 144 (1996), no. 1, 137-166. Zbl0867.11032MR97d:11172
- [D2] F. DIAMOND, The Taylor-Wiles construction and multiplicity one, Invent. Math. 128, (1997), no. 2, 379-391. Zbl0916.11037MR98c:11047
- [DT] F. DIAMOND, R. TAYLOR, Non optimal levels of mod ℓ modular representations, Invent. Math. 115 (1994), no. 3, 435-462. Zbl0847.11025MR95c:11060
- [FM] J.-M. FONTAINE, B. MAZUR, Geometric Galois representations, in Elliptic Curves, modular forms, and Fermat's Last Theorem (Hong Kong, 1993), Internat. Press (1995), 41-78. Zbl0839.14011MR96h:11049
- [Ge] S. GELBART, Automorphic Forms on Adele Groups, Annals of Math. Studies, Vol. 83, Princeton University Press (1975). Zbl0329.10018MR52 #280
- [GL] P. GÉRARDIN, J.-P. LABESSE, The solution of a base change problem for GL(2) (following Langlands, Saito, Shintani), in Automorphic forms, representations and L-functions, Proc. Symp. Pure Math., XXXIII, part 2, 115-133. Zbl0412.10018
- [G] A. GROTHENDIECK, Éléments de la géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas (deuxième partie), Publ. Math. de l'IHES 24 (1965). Zbl0135.39701
- [H1] H. HIDA, On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math. (2) 128, (1988), no. 2, 295-384. Zbl0658.10034MR89m:11046
- [H2] H. HIDA, On nearly ordinary Hecke algebras for GL(2) over totally real fields, in Algebraic number theory, Adv. Stud. Pure Math., 17, Academic Press (1989) 139-169. Zbl0742.11026MR92f:11064
- [H3] H. HIDA, Nearly ordinary Hecke algebras and Galois representations of several variables, in Algebraic analysis, geometry, and number theory (Baltimore, MD 1988), John Hopkins Univ. Press (1989), 115-134. Zbl0782.11017MR2000e:11144
- [I] K. IWASAWA, On Zℓ extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326. Zbl0285.12008MR50 #2120
- [J-L] H. JACQUET, R. LANGLANDS, Automorphic forms on GL(2), Lecture Notes in Math., 114, Springer (1970). Zbl0236.12010MR53 #5481
- [Ku] P. KUTZKO, The Langlands conjecture for GL2 of a local field, Ann. of Math. (2) 112, (1980), no. 2, 381-412. Zbl0469.22013
- [Mat] H. MATSUMURA, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge Univ. Press (1989). Zbl0666.13002MR90i:13001
- [M] B. MAZUR, Deforming Galois representations, in Galois Groups over Q, vol. 16, MSRI Publications, Springer (1989). Zbl0714.11076MR90k:11057
- [N] M. NAGATA, Local Rings, Interscience Tracts in Pure and Applied Mathematics, n° 13, Interscience Publishers (1962). Zbl0123.03402MR27 #5790
- [R] R. RAMAKRISHNA, On a variation of Mazur's deformation functor, Comp. Math. 87 (1993), 269-286. Zbl0910.11023MR94h:11054
- [Ray] M. RAYNAUD, Théorèmes de Lefschetz en cohomologie cohérent et en cohomologie étale, Bull. Soc. Math. France, Mém. no. 41. Supplément au Bull. Soc. Math. France, Tome 103, Société Mathématique de France (1975). Zbl0323.14007MR53 #10804
- [Ri] K. RIBET, Congruence relations between modular forms, Proc. Int. Cong. of Math. 17 (1983), 503-514. Zbl0575.10024MR87c:11045
- [Sch] M. SCHLESSINGER, Functors on Artin rings, Trans. AMS 130 (1968), 208-222. Zbl0167.49503MR36 #184
- [Se] J.-P. SERRE, Sur le résidu de la function zêta p-adique d'un corps de nombres, C.R. Acad. Sc. Paris 287, Serie A (1978), 183-188. Zbl0393.12026MR58 #22024
- [Shi] H. SHIMIZU, Theta series and modular forms on GL2, J. Math. Soc. Japan 24 (1973), 638-683. Zbl0241.10016MR48 #11406
- [Sh] G. SHIMURA, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679. Zbl0394.10015MR80a:10043
- [SW] C. SKINNER, A. WILES, Ordinary representations and modular forms, Proc. Nat. Acad. Sci. USA 94 (1997), no. 20, 10520-10527. Zbl0924.11044MR98h:11068
- [TW] R. TAYLOR, A. WILES, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2), 141 (1995), no. 3, 553-572. Zbl0823.11030MR96d:11072
- [Wal] M. WALDSCHMIDT, A lower bound for the p-adic rank of the units of an algebraic number field, in Topics in classical number theory, Vol. I, II (Budapest, 1981), Colloq. Math. Soc. János Bolyai, 34, North-Holland (1984), 1617-1650. Zbl0541.12003MR86h:11095
- [Wa] L. WASHINGTON, The non-p-part of the class number in a cyclotomic Zp-extension, Invent. Math. 49 (1978), no. 1, 87-97. Zbl0403.12007MR80c:12005
- [We] A. WEIL, Basic Number Theory, Springer (1967). Zbl0176.33601MR38 #3244
- [W1] A. WILES, Modular elliptic curves and Fermat's Last Theorem, Ann. of Math. (2), 142 (1995), 443-551. Zbl0823.11029MR96d:11071
- [W2] A. WILES, On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988), 529-573. Zbl0664.10013MR89j:11051
- [W3] A. WILES, On p-adic representations for totally real fields, Ann. of Math. (2), 123 (1986), 407-456. Zbl0613.12013MR87g:11142
Citations in EuDML Documents
top- C.M. Skinner, Andrew J. Wiles, Nearly ordinary deformations of irreducible residual representations
- Chris Skinner, Modularity of Galois representations
- Bas Edixhoven, Rational elliptic curves are modular
- Jean-Pierre Wintenberger, La conjecture de modularité de Serre : le cas de conducteur
- Fred Diamond, Matthias Flach, Li Guo, The Tamagawa number conjecture of adjoint motives of modular forms
- Richard Taylor, Galois representations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.