Nearly ordinary deformations of irreducible residual representations

C.M. Skinner; Andrew J. Wiles

Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)

  • Volume: 10, Issue: 1, page 185-215
  • ISSN: 0240-2963

How to cite

top

Skinner, C.M., and Wiles, Andrew J.. "Nearly ordinary deformations of irreducible residual representations." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.1 (2001): 185-215. <http://eudml.org/doc/73538>.

@article{Skinner2001,
author = {Skinner, C.M., Wiles, Andrew J.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {eng},
number = {1},
pages = {185-215},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Nearly ordinary deformations of irreducible residual representations},
url = {http://eudml.org/doc/73538},
volume = {10},
year = {2001},
}

TY - JOUR
AU - Skinner, C.M.
AU - Wiles, Andrew J.
TI - Nearly ordinary deformations of irreducible residual representations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 1
SP - 185
EP - 215
LA - eng
UR - http://eudml.org/doc/73538
ER -

References

top
  1. [C] Carayol ( H.). — "Formes modulaires et représentations Galoisiennes à valeurs dans un anneau local complet" in p-Adic Monodromy and the Birch-Swinnerton-Dyer Conjecture (eds. B. Mazur and G. Stevens), Contemp. Math., vol. 165, 1994. Zbl0812.11036MR1279611
  2. [D1] Diamond ( F.). - "On deformation rings and Hecke rings". Ann. of Math. (2), 144 (1996), no. 1, pp. 137-166. Zbl0867.11032MR1405946
  3. [D2] Diamond ( F.). — "The refined conjecture of Serre" in Elliptic Curves, Modular forms, and Fermat's Last Theorem (ed. J. Coates), International Press, Cambridge, MA, 1995. Zbl0853.11031MR1363493
  4. [D3] Diamond ( F.). - "The Taylor-Wiles construction and multiplicity one". Invent. Math.128, (1997), no. 2, pp. 379-391. Zbl0916.11037MR1440309
  5. [F] Fujiwara ( K.). - "Deformation rings and Hecke algebras in the totally real case" preprint (1999). 
  6. [H1] Hida ( H.). - "On nearly ordinary Hecke algebras for GL(2) over totally real fields" in Algebraic number theory, Adv. Stud. Pure Math., 17, Academic Press (1989) pp. 139-169. Zbl0742.11026MR1097614
  7. [H2] Hida ( H.). — "Nearly ordinary Hecke algebras and Galois representations of several variables" in Algebraic analysis, geometry, and number theory (Baltimore, MD1988), John Hopkins Univ. Press, (1989) pp. 115-134. Zbl0782.11017MR1463699
  8. [M1] Mazur ( B.). - "Deforming Galois representations" in Galois Groups over Q, vol. 16, MSRI Publications, Springer, (1989). Zbl0714.11076MR1012172
  9. [M2] Mazur ( B.). - "An introduction to the deformation theory of Galois representations" in Modular Forms and Fermat's Last Theorem (eds. G. Cornell et al.), Springer-Verlag, New York, 1997. Zbl0901.11015MR1638481
  10. [SW1] Skinner ( C.), Wiles ( A.). - "Modular forms and residually reducible representations." Publ. Math. IHES, 89 (1999), pp. 5-126. Zbl1005.11030MR1793414
  11. [SW2] Skinner ( C.), Wiles ( A.). — "Base change and a problem of Serre" (to appear in Duke Math. J.) Zbl1016.11017MR1815248
  12. [TW] Taylor ( R.), Wiles ( A.). - "Ring-theoretic properties of certain Hecke algebras". Ann. of Math. (2)141 (1995), no. 3, pp. 553-572. Zbl0823.11030MR1333036
  13. [W] Wiles ( A.). - "Modular elliptic curves and Fermat's Last Theorem". Ann. of Math. (2), 142 (1995), pp. 443-551. Zbl0823.11029MR1333035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.