Uniform approximation of continuous functions on compact sets by biharmonic functions
Mustapha Chadli; Mohamed El Kadiri
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 3, page 427-435
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChadli, Mustapha, and El Kadiri, Mohamed. "Uniform approximation of continuous functions on compact sets by biharmonic functions." Commentationes Mathematicae Universitatis Carolinae 44.3 (2003): 427-435. <http://eudml.org/doc/249180>.
@article{Chadli2003,
abstract = {We give a characterization of functions that are uniformly approximable on a compact subset $K$ of $\mathbb \{R\}^n$ by biharmonic functions in neighborhoods of $K$.},
author = {Chadli, Mustapha, El Kadiri, Mohamed},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {biharmonic function; finely biharmonic function; approximation of continuous functions on compact sets; biharmonic function; finely biharmonic function; approximation of continuous functions on compact sets},
language = {eng},
number = {3},
pages = {427-435},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Uniform approximation of continuous functions on compact sets by biharmonic functions},
url = {http://eudml.org/doc/249180},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Chadli, Mustapha
AU - El Kadiri, Mohamed
TI - Uniform approximation of continuous functions on compact sets by biharmonic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 3
SP - 427
EP - 435
AB - We give a characterization of functions that are uniformly approximable on a compact subset $K$ of $\mathbb {R}^n$ by biharmonic functions in neighborhoods of $K$.
LA - eng
KW - biharmonic function; finely biharmonic function; approximation of continuous functions on compact sets; biharmonic function; finely biharmonic function; approximation of continuous functions on compact sets
UR - http://eudml.org/doc/249180
ER -
References
top- Constantinescu C., Cornea A., Potential Theory on Harmonic Spaces, Springer Verlag, Heidelberg, 1972. Zbl0248.31011MR0419799
- Debiard A., Gaveau B., Potentiel fin et algèbre de fonctions analytiques, I, J. Funct. Anal. 16 (1974), 289-304. (1974) MR0380426
- El Kadiri M., Représentation intégrale dans le cadre de la théorie axiomatique des fonctions biharmoniques, Rev. Roumaine Math. Pures Appl. 42 (1997), 7-8, 579-589. (1997) MR1650389
- El Kadiri M., Fonctions finement biharmoniques, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 24 (2000), 43-62. (2000) MR1827006
- Fuglede B., Finely harmonic functions, Lecture Notes in Math. 289, Springer, Berlin-Heidelberg-New York, 1972. Zbl0248.31010MR0450590
- Fuglede B., On the mean value property of finely harmonic and finely hyperharmonic functions, Aequationes Math. 39 (1990), 198-203. (1990) Zbl0709.31002MR1045667
- Gauthier P.M., Ladouceur S., Uniform approximation and fine potential theory, J. Approx. Theory 72.2 (1993), 138-140. (1993) Zbl0782.31002MR1204136
- Helms L.L., Introduction to Potential Theory, Wiley-Interscience, 1969. Zbl0188.17203MR0261018
- Hervé R.M., Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12 (1962), 415-517. (1962) MR0139756
- Lyons T.J., Cones of lower semicontinuous functions and a characterization of finely hyperharmonic functions, Math. Ann. 261 (1982), 293-297. (1982) MR0679790
- Smyrnelis E.P., Axiomatique des fonctions biharmoniques, 1e section, Ann. Inst. Fourier 26.1 (1975), 35-98. (1975) Zbl0295.31006
- Smyrnelis E.P., Axiomatique des fonctions biharmoniques, 2e section, Ann. Inst. Fourier 26.3 (1976), 1-47. (1976) MR0477101
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.