On the binary expansion of irrational algebraic numbers
- [1] T. Rivoal, Institut Fourier, CNRS UMR 5582, Université Grenoble 1, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Hères cedex, France.
Actes des rencontres du CIRM (2009)
- Volume: 1, Issue: 1, page 55-60
- ISSN: 2105-0597
Access Full Article
topHow to cite
topRivoal, Tanguy. "On the binary expansion of irrational algebraic numbers." Actes des rencontres du CIRM 1.1 (2009): 55-60. <http://eudml.org/doc/10019>.
@article{Rivoal2009,
affiliation = {T. Rivoal, Institut Fourier, CNRS UMR 5582, Université Grenoble 1, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Hères cedex, France.},
author = {Rivoal, Tanguy},
journal = {Actes des rencontres du CIRM},
keywords = {Binary expansions; algebraic numbers; diophantine approximation; Hermite Padé approximants; Lerch function; polylogarithms; Riemann zeta function; Hurwitz zeta functions},
language = {eng},
month = {3},
number = {1},
pages = {55-60},
publisher = {CIRM},
title = {On the binary expansion of irrational algebraic numbers},
url = {http://eudml.org/doc/10019},
volume = {1},
year = {2009},
}
TY - JOUR
AU - Rivoal, Tanguy
TI - On the binary expansion of irrational algebraic numbers
JO - Actes des rencontres du CIRM
DA - 2009/3//
PB - CIRM
VL - 1
IS - 1
SP - 55
EP - 60
LA - eng
KW - Binary expansions; algebraic numbers; diophantine approximation; Hermite Padé approximants; Lerch function; polylogarithms; Riemann zeta function; Hurwitz zeta functions
UR - http://eudml.org/doc/10019
ER -
References
top- B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. (2) 165 (2007), no. 2, 547–565. Zbl1195.11094MR2299740
- B. Adamczewski, The many faces of , slides of a talk given at the conference “Diophantine Approximation and related topics” (Tokyo) in march 2009.
- D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux 16(3) (2004), 487–518. Zbl1076.11045MR2144954
- E. Borel, Sur les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247–271. Zbl40.0283.01
- D. G. Champernowne, The construction of decimals normal in the scale of ten, J. Lond. Math. Soc bf 8 (1933), 254–260. Zbl0007.33701
- A. J. Kempner, On transcendental numbers, Trans. Amer. Math. Soc. 17 (1916), 476–482. Zbl46.0278.04MR1501054
- M.J. Knight, An “oceans of zeros” proof that a certain non-Liouville number is transcendental, Amer. Math. Monthly 98 (1991), no. 10, 947–949. Zbl0743.11034MR1137543
- D. Ridout, Rational approximations to algebraic numbers, Mathematika 4 (1957), 125–131. Zbl0079.27401MR93508
- T. Rivoal, On the bits counting function of real numbers, J. Aust. Math. Soc. 85 (2008), no. 1, 95–111. Zbl1234.11099MR2460868
- T. Rivoal, Convergents and irrationality measures of logarithms, Rev. Mat. Iberoamericana 23.3 (2007), 931–952. Zbl1227.11086MR2414498
- K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20; corrigendum, 168. Zbl0064.28501MR72182
- W. Sierpiński, Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d’une tel nombre, Bull. SMF 45 (1917), 125–132. Zbl46.0276.02MR1504764
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.