On the structure of Milnor -groups of certain complete discrete valuation fields
- [1] Department of Mathematics, Tokyo Metropolitan University, Hachioji, Tokyo, 192-03, Japan
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 2, page 377-401
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKurihara, Masato. "On the structure of Milnor $K$-groups of certain complete discrete valuation fields." Journal de Théorie des Nombres de Bordeaux 16.2 (2004): 377-401. <http://eudml.org/doc/249271>.
@article{Kurihara2004,
abstract = {For a typical example of a complete discrete valuation field $K$ of type II in the sense of [12], we determine the graded quotients $\operatornamewithlimits\{gr\}^\{i\}K_\{2\}(K)$ for all $i>0$. In the Appendix, we describe the Milnor $K$-groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.},
affiliation = {Department of Mathematics, Tokyo Metropolitan University, Hachioji, Tokyo, 192-03, Japan},
author = {Kurihara, Masato},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Milnor -group; complete discrete valuation field; Kähler differential; -adic exponential},
language = {eng},
number = {2},
pages = {377-401},
publisher = {Université Bordeaux 1},
title = {On the structure of Milnor $K$-groups of certain complete discrete valuation fields},
url = {http://eudml.org/doc/249271},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Kurihara, Masato
TI - On the structure of Milnor $K$-groups of certain complete discrete valuation fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 2
SP - 377
EP - 401
AB - For a typical example of a complete discrete valuation field $K$ of type II in the sense of [12], we determine the graded quotients $\operatornamewithlimits{gr}^{i}K_{2}(K)$ for all $i>0$. In the Appendix, we describe the Milnor $K$-groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.
LA - eng
KW - Milnor -group; complete discrete valuation field; Kähler differential; -adic exponential
UR - http://eudml.org/doc/249271
ER -
References
top- S. Bloch, Algebraic -theory and crystalline cohomology. Publ. Math. IHES 47 (1977), 187–268. Zbl0388.14010MR488288
- S. Bloch, K. Kato, -adic etale cohomology. Publ. Math. IHES 63 (1986), 107–152. Zbl0613.14017MR849653
- M. Demazure, Lectures on -divisible groups. Lecture Notes in Math. 302, Springer (1972). Zbl0247.14010MR344261
- J.-M. Fontaine, W. Messing, -adic periods and -adic étale cohomology. Contemporary Math. 67 (1987), 179–207. Zbl0632.14016MR902593
- J. Graham,Continuous symbols on fields of formal power series, Algebraic K-theory II. Lecture Notes in Math. 342, Springer-Verlag (1973), 474–486. Zbl0272.18008MR364187
- L. Illusie, Complexes de de Rham Witt et cohomologie crystalline. Ann. Sci. Éc. Norm. Super. série t. 12 (1979), 501–661. Zbl0436.14007MR565469
- K. Kato, Residue homomorphisms in Milnor -theory, in Galois groups and their representations. Adv. St. in Pure Math. 2 (1983), 153–172. Zbl0586.12011MR732467
- K. Kato, A generalization of local class field theory by using -groups I. J. Fac. Sci. Univ. Tokyo 26 (1979), 303–376, II, ibid 27 (1980), 603–683, III, ibid 29 (1982), 31–43. Zbl0428.12013MR550688
- K. Kato, On -adic vanishing cycles (applications of ideas of Fontaine-Messing). Adv. St. in Pure Math. 10 (1987), 207–251. Zbl0645.14009MR946241
- K. Kato, The explicit reciprocity law and the cohomology of Fontaine-Messing. Bull. Soc. Math. France 119 (1991), 397–441. Zbl0752.14015MR1136845
- M. Kolster, of non-commutative local rings. J. Algebra 95 (1985), 173–200. Zbl0588.16019
- M. Kurihara, On two types of complete discrete valuation fields. Compos. Math. 63 (1987), 237–257. Zbl0674.12007MR906373
- M. Kurihara, A note on -adic etale cohomology. Proc. Japan Acad. Ser. A 63 (1987), 275–278. Zbl0647.14006MR931263
- M. Kurihara, Abelian extensions of an absolutely unramified local field with general residue field. Invent. math. 93 (1988), 451–480. Zbl0666.12012MR948109
- M. Kurihara, The exponential homomorphisms for the Milnor -groups and an explicit reciprocity law. J. reine angew. Math. 498 (1998), 201–221. Zbl0909.19001MR1629866
- J. Nakamura, On the structures of the Milnor -groups of some complete discrete valuation fields. -Theory 19 (2000), 269–309. Zbl1008.11068MR1756261
- J. Nakamura, On the Milnor -groups of complete discrete valuation fields. Doc. Math. 5 (2000), 151–200 (electronic). Zbl0948.19001MR1756354
- A.N. Parshin, Class field theory and algebraic -theory. Uspekhi Mat. Nauk. 30 no 1 (1975), 253–254, (English transl. in Russian Math. Surveys). Zbl0302.14005
- J.-P. Serre, Corps locaux ( édition), Hermann, Paris, (1968). Zbl0137.02601MR354618
- T. Tsuji, Syntomic complexes and -adic vanishing cycles. J. reine angew. Math. 472 (1996), 69–138. Zbl0838.14015MR1384907
- T. Tsuji, -adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. math. 137 (1999), 233–411. Zbl0945.14008MR1705837
- W. Van der Kallen, The of rings with many units. Ann. Sci. Éc. Norm. Sup. série t. 10 (1977), 473–515. Zbl0393.18012MR506170
- S.V. Vostokov, Explicit form of the law of reciprocity. Izv. Acad. Nauk. SSSR 13 (1979), 557–588. Zbl0467.12018
- I. Zhukov, Milnor and topological -groups of multidimensional complete fields. St. Petersburg Math. J. 9 (1998), 69–105. Zbl0899.11058MR1458420
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.