On the structure of Milnor K -groups of certain complete discrete valuation fields

Masato Kurihara[1]

  • [1] Department of Mathematics, Tokyo Metropolitan University, Hachioji, Tokyo, 192-03, Japan

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 2, page 377-401
  • ISSN: 1246-7405

Abstract

top
For a typical example of a complete discrete valuation field K of type II in the sense of [12], we determine the graded quotients gr i K 2 ( K ) for all i > 0 . In the Appendix, we describe the Milnor K -groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.

How to cite

top

Kurihara, Masato. "On the structure of Milnor $K$-groups of certain complete discrete valuation fields." Journal de Théorie des Nombres de Bordeaux 16.2 (2004): 377-401. <http://eudml.org/doc/249271>.

@article{Kurihara2004,
abstract = {For a typical example of a complete discrete valuation field $K$ of type II in the sense of [12], we determine the graded quotients $\operatornamewithlimits\{gr\}^\{i\}K_\{2\}(K)$ for all $i&gt;0$. In the Appendix, we describe the Milnor $K$-groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.},
affiliation = {Department of Mathematics, Tokyo Metropolitan University, Hachioji, Tokyo, 192-03, Japan},
author = {Kurihara, Masato},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Milnor -group; complete discrete valuation field; Kähler differential; -adic exponential},
language = {eng},
number = {2},
pages = {377-401},
publisher = {Université Bordeaux 1},
title = {On the structure of Milnor $K$-groups of certain complete discrete valuation fields},
url = {http://eudml.org/doc/249271},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Kurihara, Masato
TI - On the structure of Milnor $K$-groups of certain complete discrete valuation fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 2
SP - 377
EP - 401
AB - For a typical example of a complete discrete valuation field $K$ of type II in the sense of [12], we determine the graded quotients $\operatornamewithlimits{gr}^{i}K_{2}(K)$ for all $i&gt;0$. In the Appendix, we describe the Milnor $K$-groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.
LA - eng
KW - Milnor -group; complete discrete valuation field; Kähler differential; -adic exponential
UR - http://eudml.org/doc/249271
ER -

References

top
  1. S. Bloch, Algebraic K -theory and crystalline cohomology. Publ. Math. IHES 47 (1977), 187–268. Zbl0388.14010MR488288
  2. S. Bloch, K. Kato, p -adic etale cohomology. Publ. Math. IHES 63 (1986), 107–152. Zbl0613.14017MR849653
  3. M. Demazure, Lectures on p -divisible groups. Lecture Notes in Math. 302, Springer (1972). Zbl0247.14010MR344261
  4. J.-M. Fontaine, W. Messing, p -adic periods and p -adic étale cohomology. Contemporary Math. 67 (1987), 179–207. Zbl0632.14016MR902593
  5. J. Graham,Continuous symbols on fields of formal power series, Algebraic K-theory II. Lecture Notes in Math. 342, Springer-Verlag (1973), 474–486. Zbl0272.18008MR364187
  6. L. Illusie, Complexes de de Rham Witt et cohomologie crystalline. Ann. Sci. Éc. Norm. Super. 4 e série t. 12 (1979), 501–661. Zbl0436.14007MR565469
  7. K. Kato, Residue homomorphisms in Milnor K -theory, in Galois groups and their representations. Adv. St. in Pure Math. 2 (1983), 153–172. Zbl0586.12011MR732467
  8. K. Kato, A generalization of local class field theory by using K -groups I. J. Fac. Sci. Univ. Tokyo 26 (1979), 303–376, II, ibid 27 (1980), 603–683, III, ibid 29 (1982), 31–43. Zbl0428.12013MR550688
  9. K. Kato, On p -adic vanishing cycles (applications of ideas of Fontaine-Messing). Adv. St. in Pure Math. 10 (1987), 207–251. Zbl0645.14009MR946241
  10. K. Kato, The explicit reciprocity law and the cohomology of Fontaine-Messing. Bull. Soc. Math. France 119 (1991), 397–441. Zbl0752.14015MR1136845
  11. M. Kolster, K 2 of non-commutative local rings. J. Algebra 95 (1985), 173–200. Zbl0588.16019
  12. M. Kurihara, On two types of complete discrete valuation fields. Compos. Math. 63 (1987), 237–257. Zbl0674.12007MR906373
  13. M. Kurihara, A note on p -adic etale cohomology. Proc. Japan Acad. Ser. A 63 (1987), 275–278. Zbl0647.14006MR931263
  14. M. Kurihara, Abelian extensions of an absolutely unramified local field with general residue field. Invent. math. 93 (1988), 451–480. Zbl0666.12012MR948109
  15. M. Kurihara, The exponential homomorphisms for the Milnor K -groups and an explicit reciprocity law. J. reine angew. Math. 498 (1998), 201–221. Zbl0909.19001MR1629866
  16. J. Nakamura, On the structures of the Milnor K -groups of some complete discrete valuation fields. K -Theory 19 (2000), 269–309. Zbl1008.11068MR1756261
  17. J. Nakamura, On the Milnor K -groups of complete discrete valuation fields. Doc. Math. 5 (2000), 151–200 (electronic). Zbl0948.19001MR1756354
  18. A.N. Parshin, Class field theory and algebraic K -theory. Uspekhi Mat. Nauk. 30 no 1 (1975), 253–254, (English transl. in Russian Math. Surveys). Zbl0302.14005
  19. J.-P. Serre, Corps locaux ( 3 e édition), Hermann, Paris, (1968). Zbl0137.02601MR354618
  20. T. Tsuji, Syntomic complexes and p -adic vanishing cycles. J. reine angew. Math. 472 (1996), 69–138. Zbl0838.14015MR1384907
  21. T. Tsuji, p -adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. math. 137 (1999), 233–411. Zbl0945.14008MR1705837
  22. W. Van der Kallen, The K 2 of rings with many units. Ann. Sci. Éc. Norm. Sup. 4 e série t. 10 (1977), 473–515. Zbl0393.18012MR506170
  23. S.V. Vostokov, Explicit form of the law of reciprocity. Izv. Acad. Nauk. SSSR 13 (1979), 557–588. Zbl0467.12018
  24. I. Zhukov, Milnor and topological K -groups of multidimensional complete fields. St. Petersburg Math. J. 9 (1998), 69–105. Zbl0899.11058MR1458420

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.