The K 2 of rings with many units

Wilberd van der Kallen

Annales scientifiques de l'École Normale Supérieure (1977)

  • Volume: 10, Issue: 4, page 473-515
  • ISSN: 0012-9593

How to cite

top

van der Kallen, Wilberd. "The $K_2$ of rings with many units." Annales scientifiques de l'École Normale Supérieure 10.4 (1977): 473-515. <http://eudml.org/doc/82003>.

@article{vanderKallen1977,
author = {van der Kallen, Wilberd},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Irreducible Reduced Root System; Brauer Group; Algebraic K-Theory; Simply Connected Chevalley Group; Infinite Residue Field; Local Ring; Power Norm Residue Symbol Map; Steinberg Group},
language = {eng},
number = {4},
pages = {473-515},
publisher = {Elsevier},
title = {The $K_2$ of rings with many units},
url = {http://eudml.org/doc/82003},
volume = {10},
year = {1977},
}

TY - JOUR
AU - van der Kallen, Wilberd
TI - The $K_2$ of rings with many units
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1977
PB - Elsevier
VL - 10
IS - 4
SP - 473
EP - 515
LA - eng
KW - Irreducible Reduced Root System; Brauer Group; Algebraic K-Theory; Simply Connected Chevalley Group; Infinite Residue Field; Local Ring; Power Norm Residue Symbol Map; Steinberg Group
UR - http://eudml.org/doc/82003
ER -

References

top
  1. [1] M. ARTIN, Théorème de Weil sur la construction d'un groupe à partir d'une loi rationnelle, Schémas en Groupes II, SGA 3 (Lecture Notes in Math., N° 152, Springer, Berlin, 1970, pp. 632-653). 
  2. [2] M. AUSLANDER and O. GOLDMAN, The Brauer Group of a Commutative Ring (Trans. Amer. Math. Soc., Vol. 97, 1960, pp. 367-409). Zbl0100.26304MR22 #12130
  3. [3] N. BOURBAKI, Groupes et Algèbres de Lie, Fasc. 34, Chap. VI, Actualités Sc. Indust., N° 1337, Hermann, Paris, 1968. Zbl0186.33001
  4. [4] S. CHASE, D. HARRISON and A. ROSENBERG, Galois Theory and Galois Cohomology of Commutative Rings (Memoirs of the Amer. Math. Soc., Vol. 52, 1965, pp. 1-19). Zbl0143.05902MR33 #4118
  5. [5] C. CHEVALLEY, Certains schémas de groupes semi-simples (Séminaire Bourbaki, 13e année, 1960-1961, Exp. 219). Zbl0125.01705
  6. [6] R. K. DENNIS and M. R. STEIN, Injective Stability for K2 of Local Rings (Bull. Amer. Math. Soc., Vol. 80, 1974, pp. 1010-1013). Zbl0299.18007MR51 #8097
  7. [7] R. K. DENNIS and M. R. STEIN, The functor K2 : A Survey of Computations and Problems, Algebraic K-Theory II (Lecture Notes in Math., N° 342, Springer, Berlin, 1973, pp. 243-280). Zbl0271.18011MR50 #7292
  8. [8] R. K. DENNIS and M. R. STEIN, K2 of discrete valuation rings (Advances in Math., Vol. 18, 1975, pp. 182-238). Zbl0318.13017MR55 #10544
  9. [9] D. ESTES and J. OHM, Stable Range in Commutative Rings (J. Algebra, Vol. 7, 1967, pp. 343-362). Zbl0156.27303MR36 #147
  10. [10] J. E. HUMPHREYS, Linear Algebraic Groups (Graduate texts in math., Vol. 21, Springer, Berlin, 1975). Zbl0325.20039MR53 #633
  11. [11] W. VAN DER KALLEN, Injective Stability for K2, Algebraic K-Theory (Proceedings of the Northwestern conference 1976, Springer Lecture Notes in Math., N° 551, Springer, Berlin, 1976, pp. 77-154). Zbl0349.18009MR58 #22243
  12. [12] W. VAN DER KALLEN, H. MAAZEN and J. STIENSTRA, A Presentation for Some K2 (n, R) (Bull. Amer. Math. Soc., Vol. 81, 1975, pp. 934-936). Zbl0337.13012MR51 #12993
  13. [13] F. KEUNE, (t2-t)-Reciprocities on the Affine Line and Matsumoto's Theorem (Invent. Math., Vol. 28, 1975, pp. 185-192). Zbl0331.18017MR52 #13740
  14. [14] M. KNUS and M. OJANGUREN, A Norm for Modules and Algebras (Math. Z., Vol. 142, 1975, pp. 33-45). Zbl0297.13009MR51 #3139
  15. [15] M. KNUS et M. OJANGUREN, Théorie de la descente et algèbres d'Azumaya (Lecture Notes in Math., N° 389, Springer, Berlin, 1974). Zbl0284.13002MR54 #5209
  16. [16] H. MAAZEN and J. STIENSTRA, A Presentation for K2 of Split Radical Pairs (to appear in J. Pure and Appl. Algebra). Zbl0393.18013
  17. [17] H. MATSUMOTO, Sur les sous-groupes arithmétiques des groupes semi-simples déployés (Ann. scient. Ec. Norm. Sup. (4), N° 2, 1969, pp. 1-62). Zbl0261.20025MR39 #1566
  18. [18] J. MILNOR, Introduction to Algebraic K-Theory (Ann. Math. Studies, Vol. 72, Princeton University Press, Princeton, 1971). Zbl0237.18005MR50 #2304
  19. [19] M. R. STEIN, Generators, Relations and Coverings of Chevalley Groups Over Commutative Rings (Amer. J. Math., Vol. 93, 1971, pp. 965-1004). Zbl0246.20034MR48 #437
  20. [20] M. R. STEIN, Stability Theorems for K1, K2 and Related Functors Modelled on Chevalley Groups (to appear). 
  21. [21] M. R. STEIN, Surjective Stability in Dimension 0 for K2 and Related Functors (Trans. Amer. Math. Soc., Vol. 178, 1973, pp. 165-191). Zbl0267.18015MR48 #6267
  22. [22] R. STEINBERG, Générateurs, relations et revêtements de groupes algébriques (Colloque sur la théorie des groupes algébriques, Bruxelles, 1962, pp. 113-127). Zbl0272.20036MR27 #3638
  23. [23] A. A. SUSLIN and M. S. TULENBAYEV, A stabilization Theorem for Milnor's K2 Functor [(Russian), Zapiski Naučnyh Seminarov LOMI, Tom. 64, Leningrad, 1976, pp. 131-152]. Zbl0356.18014
  24. [24] L. N. VASERSTEIN, Stable Rank of Rings and Dimensionality of Topological Spaces [Funkcional. Anal. i Prilozen, (2), N° 5, 1971, pp. 17-27 (Consultants Bureau Translation, 102-110)]. Zbl0239.16028MR44 #1701
  25. [25] L. N. VASERSTEIN, On the Stabilization of Milnor's K2 Functor [(Russian), Uspehi Mat. Nauk, Vol. 30, N° 1, 1975, p. 224]. Zbl0326.18009MR53 #8198

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.