On the axiomatic theory of spectrum II

M. Mbekhta; V. Müller

Studia Mathematica (1996)

  • Volume: 119, Issue: 2, page 129-147
  • ISSN: 0039-3223

Abstract

top
We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.

How to cite

top

Mbekhta, M., and Müller, V.. "On the axiomatic theory of spectrum II." Studia Mathematica 119.2 (1996): 129-147. <http://eudml.org/doc/216290>.

@article{Mbekhta1996,
abstract = {We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.},
author = {Mbekhta, M., Müller, V.},
journal = {Studia Mathematica},
keywords = {spectral mapping theorem; ascent; descent; semiregular operators; quasi-Fredholm operators; kernels; ranges; spectral mapping property},
language = {eng},
number = {2},
pages = {129-147},
title = {On the axiomatic theory of spectrum II},
url = {http://eudml.org/doc/216290},
volume = {119},
year = {1996},
}

TY - JOUR
AU - Mbekhta, M.
AU - Müller, V.
TI - On the axiomatic theory of spectrum II
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 2
SP - 129
EP - 147
AB - We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.
LA - eng
KW - spectral mapping theorem; ascent; descent; semiregular operators; quasi-Fredholm operators; kernels; ranges; spectral mapping property
UR - http://eudml.org/doc/216290
ER -

References

top
  1. [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32(1985), 279-294. 
  2. [2] M. Berkani et A. Ouahab, Théorème de l'application spectrale pour le spectre essentiel quasi-Fredholm, Proc. Amer. Math. Soc., to appear. 
  3. [3] J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, ibid. 66 (1977), 301-314. Zbl0375.47001
  4. [4] K. H. Förster and G.-O. Liebentrau, Semi-Fredholm operators and sequence conditions, Manuscripta Math. 44 (1983), 35-44. 
  5. [5] M. A. Gol'dman and S. N. Krachkovskiĭ, On the stability of some properties of a closed linear operator, Dokl. Akad. Nauk SSSR 209 (1973), 769-772 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 502-505. 
  6. [6] S. Grabiner, Ascent, descent and compact perturbations, Proc. Amer. Math. Soc. 71 (1978), 79-80. Zbl0392.47002
  7. [7] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337. Zbl0477.47013
  8. [8] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971),17-32. Zbl0203.45601
  9. [9] R. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 72 (1972), 89-107. Zbl0206.13301
  10. [10] M. A. Kaashoek, Stability theorems for closed linear operators, Indag. Math. 27 (1965), 452-466. Zbl0138.07601
  11. [11] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. Zbl0090.09003
  12. [12] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966. Zbl0148.12601
  13. [13] V. Kordula, The essential Apostol spectrum and finite-dimensional perturbations, to appear. Zbl0880.47005
  14. [14] V. Kordula and V. Müller, The distance from the Apostol spectrum, Proc. Amer. Math, Soc., to appear. Zbl0861.47008
  15. [15] V. Kordula and V. Müller, On the axiomatic theory of spectrum, this issue, 109-128. Zbl0857.47001
  16. [16] J. P. Labrousse, Les opérateurs quasi-Fredholm : une généralisation des opérateurs semi-Fredholm, y Rend. Circ. Mat. Palermo 29 (1980), 161-258. Zbl0474.47008
  17. [17] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. Zbl0694.47002
  18. [18] M. Mbekhta et A. Ouahab, Opérateur semi-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged), to appear. Zbl0742.47001
  19. [19] M. Mbekhta et A. Ouahab, Contribution à la théorie spectrale généralisée dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836. Zbl0742.47001
  20. [20] V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380. Zbl0845.47005
  21. [21] V. Rakočevič, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-208. Zbl0794.47003
  22. [22] B. N. Sadovskiĭ, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155. Zbl0243.47033
  23. [23] P. Saphar, Contributions à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. Zbl0139.08502
  24. [24] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489. Zbl0721.47005
  25. [25] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148. Zbl0306.47014
  26. [26] A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18-49. Zbl0138.07602

Citations in EuDML Documents

top
  1. J. Koliha, M. Mbekhta, V. Müller, Pak Poon, Corrigendum and addendum: "On the axiomatic theory of spectrum II"
  2. M. Berkani, Dagmar Medková, A note on the index of B -Fredholm operators
  3. Vladimír Müller, Axiomatic theory of spectrum III: semiregularities
  4. M. Berkani, Restriction of an operator to the range of its powers
  5. M. Amouch, H. Zguitti, B-Fredholm and Drazin invertible operators through localized SVEP
  6. Jacobus J. Grobler, Heinrich Raubenheimer, Andre Swartz, The index for Fredholm elements in a Banach algebra via a trace II
  7. M. Berkani, N. Castro, S. V. Djordjević, Single valued extension property and generalized Weyl’s theorem
  8. M. Amouch, H. Zguitti, A note on the a -Browder’s and a -Weyl’s theorems
  9. Vladimír Kordula, Vladimír Müller, Vladimir Rakočević, On the semi-Browder spectrum
  10. L. Lindeboom, H. Raubenheimer, On regularities and Fredholm theory

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.