On the axiomatic theory of spectrum II
Studia Mathematica (1996)
- Volume: 119, Issue: 2, page 129-147
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topMbekhta, M., and Müller, V.. "On the axiomatic theory of spectrum II." Studia Mathematica 119.2 (1996): 129-147. <http://eudml.org/doc/216290>.
@article{Mbekhta1996,
abstract = {We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.},
author = {Mbekhta, M., Müller, V.},
journal = {Studia Mathematica},
keywords = {spectral mapping theorem; ascent; descent; semiregular operators; quasi-Fredholm operators; kernels; ranges; spectral mapping property},
language = {eng},
number = {2},
pages = {129-147},
title = {On the axiomatic theory of spectrum II},
url = {http://eudml.org/doc/216290},
volume = {119},
year = {1996},
}
TY - JOUR
AU - Mbekhta, M.
AU - Müller, V.
TI - On the axiomatic theory of spectrum II
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 2
SP - 129
EP - 147
AB - We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.
LA - eng
KW - spectral mapping theorem; ascent; descent; semiregular operators; quasi-Fredholm operators; kernels; ranges; spectral mapping property
UR - http://eudml.org/doc/216290
ER -
References
top- [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32(1985), 279-294.
- [2] M. Berkani et A. Ouahab, Théorème de l'application spectrale pour le spectre essentiel quasi-Fredholm, Proc. Amer. Math. Soc., to appear.
- [3] J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, ibid. 66 (1977), 301-314. Zbl0375.47001
- [4] K. H. Förster and G.-O. Liebentrau, Semi-Fredholm operators and sequence conditions, Manuscripta Math. 44 (1983), 35-44.
- [5] M. A. Gol'dman and S. N. Krachkovskiĭ, On the stability of some properties of a closed linear operator, Dokl. Akad. Nauk SSSR 209 (1973), 769-772 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 502-505.
- [6] S. Grabiner, Ascent, descent and compact perturbations, Proc. Amer. Math. Soc. 71 (1978), 79-80. Zbl0392.47002
- [7] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337. Zbl0477.47013
- [8] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971),17-32. Zbl0203.45601
- [9] R. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 72 (1972), 89-107. Zbl0206.13301
- [10] M. A. Kaashoek, Stability theorems for closed linear operators, Indag. Math. 27 (1965), 452-466. Zbl0138.07601
- [11] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. Zbl0090.09003
- [12] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966. Zbl0148.12601
- [13] V. Kordula, The essential Apostol spectrum and finite-dimensional perturbations, to appear. Zbl0880.47005
- [14] V. Kordula and V. Müller, The distance from the Apostol spectrum, Proc. Amer. Math, Soc., to appear. Zbl0861.47008
- [15] V. Kordula and V. Müller, On the axiomatic theory of spectrum, this issue, 109-128. Zbl0857.47001
- [16] J. P. Labrousse, Les opérateurs quasi-Fredholm : une généralisation des opérateurs semi-Fredholm, y Rend. Circ. Mat. Palermo 29 (1980), 161-258. Zbl0474.47008
- [17] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. Zbl0694.47002
- [18] M. Mbekhta et A. Ouahab, Opérateur semi-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged), to appear. Zbl0742.47001
- [19] M. Mbekhta et A. Ouahab, Contribution à la théorie spectrale généralisée dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836. Zbl0742.47001
- [20] V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380. Zbl0845.47005
- [21] V. Rakočevič, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-208. Zbl0794.47003
- [22] B. N. Sadovskiĭ, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155. Zbl0243.47033
- [23] P. Saphar, Contributions à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. Zbl0139.08502
- [24] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489. Zbl0721.47005
- [25] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148. Zbl0306.47014
- [26] A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18-49. Zbl0138.07602
Citations in EuDML Documents
top- J. Koliha, M. Mbekhta, V. Müller, Pak Poon, Corrigendum and addendum: "On the axiomatic theory of spectrum II"
- M. Berkani, Dagmar Medková, A note on the index of -Fredholm operators
- Vladimír Müller, Axiomatic theory of spectrum III: semiregularities
- M. Berkani, Restriction of an operator to the range of its powers
- M. Amouch, H. Zguitti, B-Fredholm and Drazin invertible operators through localized SVEP
- Jacobus J. Grobler, Heinrich Raubenheimer, Andre Swartz, The index for Fredholm elements in a Banach algebra via a trace II
- M. Berkani, N. Castro, S. V. Djordjević, Single valued extension property and generalized Weyl’s theorem
- M. Amouch, H. Zguitti, A note on the -Browder’s and -Weyl’s theorems
- Vladimír Kordula, Vladimír Müller, Vladimir Rakočević, On the semi-Browder spectrum
- L. Lindeboom, H. Raubenheimer, On regularities and Fredholm theory
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.