On the axiomatic theory of spectrum
Studia Mathematica (1996)
- Volume: 119, Issue: 2, page 109-128
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. Zbl0271.46039
- [3] R. E. Curto and A. T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), 407-413. Zbl0662.47003
- [4] N. Dunford, Survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274. Zbl0088.32102
- [5] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32. Zbl0203.45601
- [6] J. D. Gray, Local analytic extensions of the resolvent, Pacific J. Math. 27 (1968), 305-324. Zbl0172.17204
- [7] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
- [8] V. Kordula, The essential Apostol spectrum and finite dimensional perturbations, to appear. Zbl0880.47005
- [9] V. Kordula and V. Müller, The distance from the Apostol spectrum, to appear. Zbl0861.47008
- [10] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. Zbl0694.47002
- [11] M. Mbekhta et A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Publ. Inst. Rech. Math. Av. Lille 22 (1990), XII.
- [12] M. Mbekhta et A. Ouahab, Contribution à la théorie spectrale généralisée dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836. Zbl0742.47001
- [13] V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380. Zbl0845.47005
- [14] V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209. Zbl0794.47003
- [15] T. J. Ransford, Generalized spectra and analytic multivalued functions, J. London Math. Soc. 29 (1984), 306-322. Zbl0508.46036
- [16] P. Saphar, Contributions à l'étude des aplications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. Zbl0139.08502
- [17] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.
- [18] C. Schmoeger, Relatively regular operators and a spectral mapping theorem, J. Math. Anal. Appl. 175 (1993), 315-320. Zbl0781.47009
- [19] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148. Zbl0306.47014
- [20] F.-H. Vasilescu, Analytic functions and some residual spectral properties, Rev. Roumaine Math. Pures Appl. 15 (1970), 435-451. Zbl0194.44101
- [21] F.-H. Vasilescu, Spectral mapping theorem for the local spectrum, Czechoslovak Math. J. 30 (1980), 28-35. Zbl0437.47003
- [22] P. Vrbová, On local spectral properties of operators in Banach spaces, ibid. 23 (1973), 483-492. Zbl0268.47006
- [23] W. Żelazko, Axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261. Zbl0426.47002
Citations in EuDML Documents
top- J. Koliha, M. Mbekhta, V. Müller, Pak Poon, Corrigendum and addendum: "On the axiomatic theory of spectrum II"
- M. Berkani, Dagmar Medková, A note on the index of -Fredholm operators
- Angel Martínez Meléndez, Antoni Wawrzyńczyk, An approach to joint spectra
- M. Mbekhta, V. Müller, On the axiomatic theory of spectrum II
- Vladimír Müller, Axiomatic theory of spectrum III: semiregularities
- M. Berkani, Restriction of an operator to the range of its powers
- Jacobus J. Grobler, Heinrich Raubenheimer, Andre Swartz, The index for Fredholm elements in a Banach algebra via a trace II
- M. Berkani, N. Castro, S. V. Djordjević, Single valued extension property and generalized Weyl’s theorem
- Vladimír Kordula, Vladimír Müller, Vladimir Rakočević, On the semi-Browder spectrum