On the axiomatic theory of spectrum
Studia Mathematica (1996)
- Volume: 119, Issue: 2, page 109-128
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topKordula, V., and Müller, V.. "On the axiomatic theory of spectrum." Studia Mathematica 119.2 (1996): 109-128. <http://eudml.org/doc/216289>.
@article{Kordula1996,
abstract = {There are a number of spectra studied in the literature which do not fit into the axiomatic theory of Żelazko. This paper is an attempt to give an axiomatic theory for these spectra, which, apart from the usual types of spectra, like one-sided, approximate point or essential spectra, include also the local spectra, the Browder spectrum and various versions of the Apostol spectrum (studied under various names, e.g. regular, semiregular or essentially semiregular).},
author = {Kordula, V., Müller, V.},
journal = {Studia Mathematica},
keywords = {axiomatic theory of spectrum; local spectrum; semiregular operators; Browder spectrum; Apostol spectrum},
language = {eng},
number = {2},
pages = {109-128},
title = {On the axiomatic theory of spectrum},
url = {http://eudml.org/doc/216289},
volume = {119},
year = {1996},
}
TY - JOUR
AU - Kordula, V.
AU - Müller, V.
TI - On the axiomatic theory of spectrum
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 2
SP - 109
EP - 128
AB - There are a number of spectra studied in the literature which do not fit into the axiomatic theory of Żelazko. This paper is an attempt to give an axiomatic theory for these spectra, which, apart from the usual types of spectra, like one-sided, approximate point or essential spectra, include also the local spectra, the Browder spectrum and various versions of the Apostol spectrum (studied under various names, e.g. regular, semiregular or essentially semiregular).
LA - eng
KW - axiomatic theory of spectrum; local spectrum; semiregular operators; Browder spectrum; Apostol spectrum
UR - http://eudml.org/doc/216289
ER -
References
top- [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. Zbl0271.46039
- [3] R. E. Curto and A. T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), 407-413. Zbl0662.47003
- [4] N. Dunford, Survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274. Zbl0088.32102
- [5] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32. Zbl0203.45601
- [6] J. D. Gray, Local analytic extensions of the resolvent, Pacific J. Math. 27 (1968), 305-324. Zbl0172.17204
- [7] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
- [8] V. Kordula, The essential Apostol spectrum and finite dimensional perturbations, to appear. Zbl0880.47005
- [9] V. Kordula and V. Müller, The distance from the Apostol spectrum, to appear. Zbl0861.47008
- [10] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. Zbl0694.47002
- [11] M. Mbekhta et A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Publ. Inst. Rech. Math. Av. Lille 22 (1990), XII.
- [12] M. Mbekhta et A. Ouahab, Contribution à la théorie spectrale généralisée dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836. Zbl0742.47001
- [13] V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380. Zbl0845.47005
- [14] V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209. Zbl0794.47003
- [15] T. J. Ransford, Generalized spectra and analytic multivalued functions, J. London Math. Soc. 29 (1984), 306-322. Zbl0508.46036
- [16] P. Saphar, Contributions à l'étude des aplications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. Zbl0139.08502
- [17] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.
- [18] C. Schmoeger, Relatively regular operators and a spectral mapping theorem, J. Math. Anal. Appl. 175 (1993), 315-320. Zbl0781.47009
- [19] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148. Zbl0306.47014
- [20] F.-H. Vasilescu, Analytic functions and some residual spectral properties, Rev. Roumaine Math. Pures Appl. 15 (1970), 435-451. Zbl0194.44101
- [21] F.-H. Vasilescu, Spectral mapping theorem for the local spectrum, Czechoslovak Math. J. 30 (1980), 28-35. Zbl0437.47003
- [22] P. Vrbová, On local spectral properties of operators in Banach spaces, ibid. 23 (1973), 483-492. Zbl0268.47006
- [23] W. Żelazko, Axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261. Zbl0426.47002
Citations in EuDML Documents
top- J. Koliha, M. Mbekhta, V. Müller, Pak Poon, Corrigendum and addendum: "On the axiomatic theory of spectrum II"
- M. Berkani, Dagmar Medková, A note on the index of -Fredholm operators
- Angel Martínez Meléndez, Antoni Wawrzyńczyk, An approach to joint spectra
- M. Mbekhta, V. Müller, On the axiomatic theory of spectrum II
- Vladimír Müller, Axiomatic theory of spectrum III: semiregularities
- M. Berkani, Restriction of an operator to the range of its powers
- Jacobus J. Grobler, Heinrich Raubenheimer, Andre Swartz, The index for Fredholm elements in a Banach algebra via a trace II
- M. Berkani, N. Castro, S. V. Djordjević, Single valued extension property and generalized Weyl’s theorem
- Vladimír Kordula, Vladimír Müller, Vladimir Rakočević, On the semi-Browder spectrum
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.