Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 3, page 625-637
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTuo-Yeong, Lee. "Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space." Czechoslovak Mathematical Journal 55.3 (2005): 625-637. <http://eudml.org/doc/30973>.
@article{Tuo2005,
abstract = {Using generalized absolute continuity, we characterize additive interval functions which are indefinite Henstock-Kurzweil integrals in the Euclidean space.},
author = {Tuo-Yeong, Lee},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized absolute continuity; Henstock-Kurzweil integral; generalized absolute continuity; Henstock-Kurzweil integral},
language = {eng},
number = {3},
pages = {625-637},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space},
url = {http://eudml.org/doc/30973},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Tuo-Yeong, Lee
TI - Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 625
EP - 637
AB - Using generalized absolute continuity, we characterize additive interval functions which are indefinite Henstock-Kurzweil integrals in the Euclidean space.
LA - eng
KW - generalized absolute continuity; Henstock-Kurzweil integral; generalized absolute continuity; Henstock-Kurzweil integral
UR - http://eudml.org/doc/30973
ER -
References
top- Real Analysis, Prentice-Hall, , 1997. (1997)
- 10.1090/S0002-9939-1991-1034883-6, Proc. American Math. Soc. 111 (1991), 127–129. (1991) Zbl0732.26011MR1034883DOI10.1090/S0002-9939-1991-1034883-6
- A descriptive definition of some multidimensional gauge integrals, Czechoslovak Math. J. 45 (1995), 549–562. (1995) MR1344520
- The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics Vol. 4, AMS, Providence, 1994. (1994) MR1288751
- Perron-type integration on -dimensional intervals and its properties, Czechoslovak Math. J. 45 (1995), 79–106. (1995) MR1314532
- 10.4153/CJM-1991-032-8, Canad. J. Math. 43 (1991), 526–539. (1991) MR1118008DOI10.4153/CJM-1991-032-8
- Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exchange 17 (1991/92), 110–139. (1991/92) MR1147361
- 10.1007/BF03323075, Results Math. 21 (1992), 138–151. (1992) MR1146639DOI10.1007/BF03323075
- The Radon-Nikodým theorem for the Henstock integral in Euclidean space, Real Anal. Exchange 22 (1996/97), 677–687. (1996/97) MR1460980
- The integral, an easy approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series 14, Cambridge University Press, Cambridge, 2000. (2000) MR1756319
- On Henstock integrability in Euclidean spaces, Real Anal. Exchange 22 (1996/97), 382–389. (1996/97) MR1433623
- 10.1007/s10587-004-6415-7, Czechoslovak Math. J. 54 (2004), 657–674. (2004) MR2086723DOI10.1007/s10587-004-6415-7
- The sharp Riesz-type definition for the Henstock-Kurzweil integral, Real Anal. Exchange 28 (2002/2003), 55–70. (2002/2003) MR1973968
- A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space, Proc. London Math. Soc. 87 (2003), 677–700. (2003) Zbl1047.26006MR2005879
- Some full characterizations of the strong McShane integral, Math. Bohem. 129 (2004), 305–312. (2004) Zbl1080.26006MR2092716
- 10.1112/S0024609398005347, Bull. London Math. Soc. 31 (1999), 173–180. (1999) MR1664188DOI10.1112/S0024609398005347
- Theory of the Integral, 2nd edition, Stechert & Co., New York, 1964. (1964) MR0167578
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.