On the length of the continued fraction for values of quotients of power sums

Pietro Corvaja[1]; Umberto Zannier[2]

  • [1] Dipartimento di Matematica Università di Udine via delle Scienze 206 33100 Udine (Italy)
  • [2] Scuola Normale Superiore Piazza dei Cavalieri, 7 56100 Pisa (Italy)

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 3, page 737-748
  • ISSN: 1246-7405

Abstract

top
Generalizing a result of Pourchet, we show that, if α , β are power sums over satisfying suitable necessary assumptions, the length of the continued fraction for α ( n ) / β ( n ) tends to infinity as n . This will be derived from a uniform Thue-type inequality for the rational approximations to the rational numbers α ( n ) / β ( n ) , n .

How to cite

top

Corvaja, Pietro, and Zannier, Umberto. "On the length of the continued fraction for values of quotients of power sums." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 737-748. <http://eudml.org/doc/249440>.

@article{Corvaja2005,
abstract = {Generalizing a result of Pourchet, we show that, if $\alpha ,\beta $ are power sums over $\mathbb\{Q\}$ satisfying suitable necessary assumptions, the length of the continued fraction for $\alpha (n)/\beta (n)$ tends to infinity as $n\rightarrow \infty $. This will be derived from a uniform Thue-type inequality for the rational approximations to the rational numbers $\alpha (n)/\beta (n)$, $n\in \mathbb\{N\}$.},
affiliation = {Dipartimento di Matematica Università di Udine via delle Scienze 206 33100 Udine (Italy); Scuola Normale Superiore Piazza dei Cavalieri, 7 56100 Pisa (Italy)},
author = {Corvaja, Pietro, Zannier, Umberto},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Continued fractions; Power sums; Applications of the subspace theorem},
language = {eng},
number = {3},
pages = {737-748},
publisher = {Université Bordeaux 1},
title = {On the length of the continued fraction for values of quotients of power sums},
url = {http://eudml.org/doc/249440},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Corvaja, Pietro
AU - Zannier, Umberto
TI - On the length of the continued fraction for values of quotients of power sums
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 737
EP - 748
AB - Generalizing a result of Pourchet, we show that, if $\alpha ,\beta $ are power sums over $\mathbb{Q}$ satisfying suitable necessary assumptions, the length of the continued fraction for $\alpha (n)/\beta (n)$ tends to infinity as $n\rightarrow \infty $. This will be derived from a uniform Thue-type inequality for the rational approximations to the rational numbers $\alpha (n)/\beta (n)$, $n\in \mathbb{N}$.
LA - eng
KW - Continued fractions; Power sums; Applications of the subspace theorem
UR - http://eudml.org/doc/249440
ER -

References

top
  1. Y. Bugeaud, P. Corvaja, U. Zannier, An upper bound for the G.C.D. of a n - 1 and b n - 1 . Math. Z. 243 (2003), 79–84. Zbl1021.11001MR1953049
  2. P. Corvaja, Une application nouvelle de la méthode de Thue. Annales de l’Institut Fourier 45 (1995), 1177–1203. Zbl0833.11030MR1370743
  3. P. Corvaja, U. Zannier, Diophantine equations with power sums and Universal Hilbert Sets. Indag. Mathem., N.S. 9 (3) (1998), 317–332. Zbl0923.11103MR1692189
  4. P. Corvaja, U. Zannier, Finiteness of integral values for the ratio of two linear recurrences. Invent. Math. 149 (2002), 431–451. Zbl1026.11021MR1918678
  5. P. Corvaja, U. Zannier, On the greatest prime factor of ( a b + 1 ) ( a c + 1 ) . Proc. Amer. Math. Soc. 131 (2003), 1705–1709. Zbl1077.11052MR1955256
  6. P. Corvaja, U. Zannier, Some New Applications of the Subspace Theorem. Compositio Math. 131 (2002), 319–340. Zbl1010.11038MR1905026
  7. Y.-H. Evertse, On sums of S -units and linear recurrences. Compositio Math. 53 (1984), 225–244. Zbl0547.10008MR766298
  8. G. Grisel, Length of the powers of a rational fraction. J. Number Theory, 62 (1997), 322–337. Zbl0878.11028MR1432778
  9. M. Mendès-France, Quelques problèmes relatifs à la théorie des fractions continues limitées. Sém. Delange-Pisot-Poitou, 13e année (1971/72), Théorie des nombres, 1, Exp. No. 2, Secrétariat Mathématique, Paris, 1973. Zbl0316.10018MR392803
  10. M. Mendès-France, Sur les fractions continues limitées. Acta Arith. 23 (1973), 207–215. Zbl0228.10007MR323727
  11. M. Mendès-France, Remarks and problems on finite and periodic continued fractions. L’Enseignement Math. 39 (1993) 249–257. Zbl0808.11007MR1252067
  12. D. Ridout, The p -adic generalization of the Thue-Siegel-Roth theorem. Mathematika 5 (1958), 40–48. Zbl0085.03501MR97382
  13. A. Schinzel, On some problems of the arithmetical theory of continued fractions. Acta Arith. 6 (1961), 393–413. Zbl0099.04003MR125814
  14. A. Schinzel, On some problems of the arithmetical theory of continued fractions II. Acta Arith. 7 (1962), 287–298. Zbl0112.28001MR139566
  15. W.M. Schmidt, Diophantine Approximation. Springer LNM 785, 1980. Zbl0421.10019MR568710
  16. W.M. Schmidt, Diophantine Approximations and Diophantine Equations. Springer Verlag LN 1467, 1991. Zbl0754.11020MR1176315
  17. P. Vojta, Roth’s theorem with moving targets. Internat. Math. Res. Notices 3 (1996) 109–114. Zbl0877.11041MR1383752
  18. U. Zannier, Some applications of Diophantine Approximation to Diophantine Equations. Forum Editrice, Udine, 2003. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.