On the length of the continued fraction for values of quotients of power sums
Pietro Corvaja[1]; Umberto Zannier[2]
- [1] Dipartimento di Matematica Università di Udine via delle Scienze 206 33100 Udine (Italy)
- [2] Scuola Normale Superiore Piazza dei Cavalieri, 7 56100 Pisa (Italy)
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 3, page 737-748
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCorvaja, Pietro, and Zannier, Umberto. "On the length of the continued fraction for values of quotients of power sums." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 737-748. <http://eudml.org/doc/249440>.
@article{Corvaja2005,
abstract = {Generalizing a result of Pourchet, we show that, if $\alpha ,\beta $ are power sums over $\mathbb\{Q\}$ satisfying suitable necessary assumptions, the length of the continued fraction for $\alpha (n)/\beta (n)$ tends to infinity as $n\rightarrow \infty $. This will be derived from a uniform Thue-type inequality for the rational approximations to the rational numbers $\alpha (n)/\beta (n)$, $n\in \mathbb\{N\}$.},
affiliation = {Dipartimento di Matematica Università di Udine via delle Scienze 206 33100 Udine (Italy); Scuola Normale Superiore Piazza dei Cavalieri, 7 56100 Pisa (Italy)},
author = {Corvaja, Pietro, Zannier, Umberto},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Continued fractions; Power sums; Applications of the subspace theorem},
language = {eng},
number = {3},
pages = {737-748},
publisher = {Université Bordeaux 1},
title = {On the length of the continued fraction for values of quotients of power sums},
url = {http://eudml.org/doc/249440},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Corvaja, Pietro
AU - Zannier, Umberto
TI - On the length of the continued fraction for values of quotients of power sums
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 737
EP - 748
AB - Generalizing a result of Pourchet, we show that, if $\alpha ,\beta $ are power sums over $\mathbb{Q}$ satisfying suitable necessary assumptions, the length of the continued fraction for $\alpha (n)/\beta (n)$ tends to infinity as $n\rightarrow \infty $. This will be derived from a uniform Thue-type inequality for the rational approximations to the rational numbers $\alpha (n)/\beta (n)$, $n\in \mathbb{N}$.
LA - eng
KW - Continued fractions; Power sums; Applications of the subspace theorem
UR - http://eudml.org/doc/249440
ER -
References
top- Y. Bugeaud, P. Corvaja, U. Zannier, An upper bound for the G.C.D. of and . Math. Z. 243 (2003), 79–84. Zbl1021.11001MR1953049
- P. Corvaja, Une application nouvelle de la méthode de Thue. Annales de l’Institut Fourier 45 (1995), 1177–1203. Zbl0833.11030MR1370743
- P. Corvaja, U. Zannier, Diophantine equations with power sums and Universal Hilbert Sets. Indag. Mathem., N.S. 9 (3) (1998), 317–332. Zbl0923.11103MR1692189
- P. Corvaja, U. Zannier, Finiteness of integral values for the ratio of two linear recurrences. Invent. Math. 149 (2002), 431–451. Zbl1026.11021MR1918678
- P. Corvaja, U. Zannier, On the greatest prime factor of . Proc. Amer. Math. Soc. 131 (2003), 1705–1709. Zbl1077.11052MR1955256
- P. Corvaja, U. Zannier, Some New Applications of the Subspace Theorem. Compositio Math. 131 (2002), 319–340. Zbl1010.11038MR1905026
- Y.-H. Evertse, On sums of -units and linear recurrences. Compositio Math. 53 (1984), 225–244. Zbl0547.10008MR766298
- G. Grisel, Length of the powers of a rational fraction. J. Number Theory, 62 (1997), 322–337. Zbl0878.11028MR1432778
- M. Mendès-France, Quelques problèmes relatifs à la théorie des fractions continues limitées. Sém. Delange-Pisot-Poitou, 13e année (1971/72), Théorie des nombres, 1, Exp. No. 2, Secrétariat Mathématique, Paris, 1973. Zbl0316.10018MR392803
- M. Mendès-France, Sur les fractions continues limitées. Acta Arith. 23 (1973), 207–215. Zbl0228.10007MR323727
- M. Mendès-France, Remarks and problems on finite and periodic continued fractions. L’Enseignement Math. 39 (1993) 249–257. Zbl0808.11007MR1252067
- D. Ridout, The -adic generalization of the Thue-Siegel-Roth theorem. Mathematika 5 (1958), 40–48. Zbl0085.03501MR97382
- A. Schinzel, On some problems of the arithmetical theory of continued fractions. Acta Arith. 6 (1961), 393–413. Zbl0099.04003MR125814
- A. Schinzel, On some problems of the arithmetical theory of continued fractions II. Acta Arith. 7 (1962), 287–298. Zbl0112.28001MR139566
- W.M. Schmidt, Diophantine Approximation. Springer LNM 785, 1980. Zbl0421.10019MR568710
- W.M. Schmidt, Diophantine Approximations and Diophantine Equations. Springer Verlag LN 1467, 1991. Zbl0754.11020MR1176315
- P. Vojta, Roth’s theorem with moving targets. Internat. Math. Res. Notices 3 (1996) 109–114. Zbl0877.11041MR1383752
- U. Zannier, Some applications of Diophantine Approximation to Diophantine Equations. Forum Editrice, Udine, 2003.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.