Distribution of quadratic non-residues which are not primitive roots
S. Gun; B. Ramakrishnan; Binod Kumar Sahoo; Ravindranathan Thangadurai
Mathematica Bohemica (2005)
- Volume: 130, Issue: 4, page 387-396
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topGun, S., et al. "Distribution of quadratic non-residues which are not primitive roots." Mathematica Bohemica 130.4 (2005): 387-396. <http://eudml.org/doc/249607>.
@article{Gun2005,
	abstract = {In this article we study, using elementary and combinatorial methods, the distribution of quadratic non-residues which are not primitive roots modulo $p^h$ or $2p^h$ for an odd prime $p$ and $h\ge 1$ an integer.},
	author = {Gun, S., Ramakrishnan, B., Sahoo, Binod Kumar, Thangadurai, Ravindranathan},
	journal = {Mathematica Bohemica},
	keywords = {quadratic non-residues; primitive roots; Fermat numbers; primitive root; Fermat number},
	language = {eng},
	number = {4},
	pages = {387-396},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {Distribution of quadratic non-residues which are not primitive roots},
	url = {http://eudml.org/doc/249607},
	volume = {130},
	year = {2005},
}
TY  - JOUR
AU  - Gun, S.
AU  - Ramakrishnan, B.
AU  - Sahoo, Binod Kumar
AU  - Thangadurai, Ravindranathan
TI  - Distribution of quadratic non-residues which are not primitive roots
JO  - Mathematica Bohemica
PY  - 2005
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 130
IS  - 4
SP  - 387
EP  - 396
AB  - In this article we study, using elementary and combinatorial methods, the distribution of quadratic non-residues which are not primitive roots modulo $p^h$ or $2p^h$ for an odd prime $p$ and $h\ge 1$ an integer.
LA  - eng
KW  - quadratic non-residues; primitive roots; Fermat numbers; primitive root; Fermat number
UR  - http://eudml.org/doc/249607
ER  - 
References
top- Über Sequenzen von Potenzresten, Sitzungsberichte Akad. Berlin (1928), 9–16. (German) (1928)
- A necessary and sufficient condition for the primality of Fermat numbers, Math. Bohem. 126 (2001), 541–549. (2001) MR1970256
- 10.1090/S0002-9939-1968-0230680-7, Proc. Amer. Math. Soc. 19 (1968), 1169–1170. (1968) Zbl0167.04001MR0230680DOI10.1090/S0002-9939-1968-0230680-7
- Primitive roots modulo a prime as consecutive terms of an arithmetic progression, J. Reine Angew. Math. 235 (1969), 185–188. (1969) Zbl0172.32502MR0242759
- Arithmetic progressions of primitive roots of a prime II, J. Reine Angew. Math. 244 (1970), 108–111. (1970) Zbl0205.34703MR0266852
- 10.1016/0022-314X(71)90046-1, J. Number Theory 3 (1971), 13–18. (1971) Zbl0211.37202MR0285476DOI10.1016/0022-314X(71)90046-1
- Arithmetic progressions of primitive roots of a prime III, J. Reine Angew. Math. 256 (1972), 130–137. (1972) Zbl0243.10002MR0308022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 