Distribution of quadratic non-residues which are not primitive roots

S. Gun; B. Ramakrishnan; Binod Kumar Sahoo; Ravindranathan Thangadurai

Mathematica Bohemica (2005)

  • Volume: 130, Issue: 4, page 387-396
  • ISSN: 0862-7959

Abstract

top
In this article we study, using elementary and combinatorial methods, the distribution of quadratic non-residues which are not primitive roots modulo p h or 2 p h for an odd prime p and h 1 an integer.

How to cite

top

Gun, S., et al. "Distribution of quadratic non-residues which are not primitive roots." Mathematica Bohemica 130.4 (2005): 387-396. <http://eudml.org/doc/249607>.

@article{Gun2005,
abstract = {In this article we study, using elementary and combinatorial methods, the distribution of quadratic non-residues which are not primitive roots modulo $p^h$ or $2p^h$ for an odd prime $p$ and $h\ge 1$ an integer.},
author = {Gun, S., Ramakrishnan, B., Sahoo, Binod Kumar, Thangadurai, Ravindranathan},
journal = {Mathematica Bohemica},
keywords = {quadratic non-residues; primitive roots; Fermat numbers; primitive root; Fermat number},
language = {eng},
number = {4},
pages = {387-396},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Distribution of quadratic non-residues which are not primitive roots},
url = {http://eudml.org/doc/249607},
volume = {130},
year = {2005},
}

TY - JOUR
AU - Gun, S.
AU - Ramakrishnan, B.
AU - Sahoo, Binod Kumar
AU - Thangadurai, Ravindranathan
TI - Distribution of quadratic non-residues which are not primitive roots
JO - Mathematica Bohemica
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 130
IS - 4
SP - 387
EP - 396
AB - In this article we study, using elementary and combinatorial methods, the distribution of quadratic non-residues which are not primitive roots modulo $p^h$ or $2p^h$ for an odd prime $p$ and $h\ge 1$ an integer.
LA - eng
KW - quadratic non-residues; primitive roots; Fermat numbers; primitive root; Fermat number
UR - http://eudml.org/doc/249607
ER -

References

top
  1. Über Sequenzen von Potenzresten, Sitzungsberichte Akad. Berlin (1928), 9–16. (German) (1928) 
  2. A necessary and sufficient condition for the primality of Fermat numbers, Math. Bohem. 126 (2001), 541–549. (2001) MR1970256
  3. 10.1090/S0002-9939-1968-0230680-7, Proc. Amer. Math. Soc. 19 (1968), 1169–1170. (1968) Zbl0167.04001MR0230680DOI10.1090/S0002-9939-1968-0230680-7
  4. Primitive roots modulo a prime as consecutive terms of an arithmetic progression, J. Reine Angew. Math. 235 (1969), 185–188. (1969) Zbl0172.32502MR0242759
  5. Arithmetic progressions of primitive roots of a prime II, J. Reine Angew. Math. 244 (1970), 108–111. (1970) Zbl0205.34703MR0266852
  6. 10.1016/0022-314X(71)90046-1, J. Number Theory 3 (1971), 13–18. (1971) Zbl0211.37202MR0285476DOI10.1016/0022-314X(71)90046-1
  7. Arithmetic progressions of primitive roots of a prime III, J. Reine Angew. Math. 256 (1972), 130–137. (1972) Zbl0243.10002MR0308022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.