Stabilization of a layered piezoelectric 3-D body by boundary dissipation
Boris Kapitonov; Bernadette Miara; Gustavo Perla Menzala
ESAIM: Control, Optimisation and Calculus of Variations (2006)
- Volume: 12, Issue: 2, page 198-215
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Akamatsu and G. Nakamura, Well-posedness of initial-boundary value problems for piezoelectric equations. Appl. Anal.81 (2002) 129–141.
- C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation control and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024–1065.
- N. Burq and G. Lebeau, Mesures de défaut de compacité, application au système de Lamé. Annals Scientifiques de l'École Normale Supérieure (4)34 (2001) 817–870.
- T. Duyckaerts, Stabilisation haute frequence d'équations aux dérivées partialles linéaires. Thèse de Doctorat, Université Paris XI-Orsay (2004).
- J.N. Eringen and G.A. Maugin, Electrodynamics of continua. Vols. 1, 2, Berlin, Springer (1990).
- T. Ikeda, Fundamentals of Piezoelectricity. Oxford University Press (1996).
- B.V. Kapitonov and G. Perla Menzala, Energy decay and a transmission problem in electromagneto-elasticity. Adv. Diff. Equations7 (2002) 819–846.
- B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi-electrostatic piezoelectric system in multilayered media. (submitted).
- V. Komornik, Exact controllability and stabilization, the multiplier method. Masson (1994).
- J.E. Lagnese, Boundary controllability in problems of transmission for a class of second order hyperbolic systems. ESAIM: COCV2 (1997) 343–357.
- G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity. Archive for Rational Mechanics and Analysis148 (1999) 179–231.
- J.-L. Lions, Exact controllability, stabilization and perturbation for distributed systems. SIAM Rev.30 (1988) 1–68.
- J.-L. Lions, Controlabilité exacte, perturbations et stabilisation de systèmes distribués. Masson, Paris (1988).
- B. Miara, Controlabilité d'un corp piézoélectrique. CRAS Paris333 (2001) 267–270.
- A. Pazy, On the applicability of Lyapunov's theorem in Hilbert space. SIAM J. Math. Anal.3 (1972) 291–294.
- A. Pazy, Semigroup of linear operators and applications to Partial Differential Equations. Springer-Verlag (1983).
- D.L. Russell, The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region. SIAM J. Control Optim.24 (1986) 199–229.