The geometrical quantity in damped wave equations on a square
Pascal Hébrard; Emmanuel Humbert
ESAIM: Control, Optimisation and Calculus of Variations (2006)
- Volume: 12, Issue: 4, page 636-661
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Asch and G. Lebeau, The spectrum of the damped wave operator for a bounded domain in . Experiment. Math.12 (2003) 227–241.
- C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024–1065.
- A. Benaddi and B. Rao, Energy decay rate of wave equations with infinite damping. J. Diff. Equ.161 (2000) 337–357.
- C. Carlos and S. Cox, Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim.39 (2001) 1748–1755.
- A. Chambert-Loir, S. Fermigier and V. Maillot, Exercices de mathématiques pour l'agrégation. Analyse I. Masson (1995).
- S. Cox and E. Zuazua, The rate at which energy decays in a damping string. Comm. Partial Diff. Equ.19 (1994) 213–243.
- P. Hébrard, Étude de la géométrie optimale des zones de contrôle dans des problèmes de stabilisation. Ph.D. Thesis, University of Nancy 1 (2002).
- P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett.48 (2003) 119–209.
- G. Lebeau, Équation des ondes amorties, in Algebraic and Geometric Methods in Mathematical Physics. Kluwer Acad. Publ., Math. Phys. Stud.19 (1996) 73–109.
- J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Comm. Pure Appl. Math.28 (1975) 501–523.
- J. Sjostrand, Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. Res. Inst. Sci.36 (2000) 573–611.
- S. Tabachnikov, Billiards mathématiques. SMF collection Panoramas et synthèses (1995).
- E. Zuazua, Exponential decay for the semilinear wave equation with localized damping. Comm. Partial Equ.15 (1990) 205–235.