On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces

Raad J. K. al Lami; Marie Škodová; Josef Mikeš

Archivum Mathematicum (2006)

  • Volume: 042, Issue: 5, page 291-299
  • ISSN: 0044-8753

Abstract

top
In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces A n onto (pseudo-) Kählerian spaces K ¯ n . We proved that these spaces A n do not admit nontrivial holomorphically projective mappings onto K ¯ n . These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.

How to cite

top

al Lami, Raad J. K., Škodová, Marie, and Mikeš, Josef. "On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces." Archivum Mathematicum 042.5 (2006): 291-299. <http://eudml.org/doc/249827>.

@article{alLami2006,
abstract = {In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar\{K\}_n$. We proved that these spaces $A_n$ do not admit nontrivial holomorphically projective mappings onto $\bar\{K\}_n$. These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.},
author = {al Lami, Raad J. K., Škodová, Marie, Mikeš, Josef},
journal = {Archivum Mathematicum},
keywords = {Kählerian space; Ricci tensor; curvature operator; holomorphically projective mapping},
language = {eng},
number = {5},
pages = {291-299},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces},
url = {http://eudml.org/doc/249827},
volume = {042},
year = {2006},
}

TY - JOUR
AU - al Lami, Raad J. K.
AU - Škodová, Marie
AU - Mikeš, Josef
TI - On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 5
SP - 291
EP - 299
AB - In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar{K}_n$. We proved that these spaces $A_n$ do not admit nontrivial holomorphically projective mappings onto $\bar{K}_n$. These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.
LA - eng
KW - Kählerian space; Ricci tensor; curvature operator; holomorphically projective mapping
UR - http://eudml.org/doc/249827
ER -

References

top
  1. Boeckx E., Kowalski O., Vanhecke L., Riemannian manifolds of conullity two, World Sci. 1996. (1996) Zbl0904.53006MR1462887
  2. Domashev V. V., Mikeš J., Theory of holomorphically projective mappings of Kählerian spaces, Math. Notes 23 (1978), 160–163; translation from Mat. Zametki, 23 2 (1978), 297–304. (1978) Zbl0406.53052MR0492674
  3. Eisenhart L. P., Non-Riemannian Geometry, Princenton Univ. Press. 1927, Colloquium Publ. Vol. 8., AMS, Providence, 2003. (1927) MR0035081
  4. Gray A., Hervella L. M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35–58. (1980) Zbl0444.53032MR0581924
  5. Kaygorodov V. R., On Riemannian spaces D n m , Itogi Nauki i Tekhniki,Tr. Geom. Sem. Vol. 5, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 1974, 359–373. (1974) 
  6. Kaygorodov V. R., Structure of curvature of space-time, Itogi Nauki i Tekhniki, Problemy Geometrii, Vol. 14, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 1983, 177–204. (1983) MR0697392
  7. Lakomá L., Jukl M., The decomposition of tensor spaces with almost complex structure, Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 145–150. Zbl1064.53015MR2069402
  8. Mikeš J., On holomorphically projective mappings of Kählerian spaces, Ukr. Geom. Sb., Kharkov, 23 (1980), 90–98. (1980) Zbl0463.53013
  9. Mikeš J., On geodesic mappings of m -symmetric and generally semi-symmetric spaces, Russ. Math. 36 8 (1992), 38–42; translation from Izv. Vyssh. Uchebn. Zaved. Mat. 8 (363) (1992), 42–46. (1992) Zbl0816.53009MR1233688
  10. Mikeš J., Geodesic mappings onto semisymmetric spaces, Russ. Math. 38 2 (1994), 35–41; translation from Izv. Vyssh. Uchebn. Zaved. Mat. 2 (381) (1994), 37–43. (1994) Zbl0835.53049MR1302090
  11. Mikeš J., On special F-planar mappings of affine-connected spaces, Vestn. Moskov. Univ. 3 (1994), 18–24. (1994) MR1315721
  12. Mikeš J., On the general trace decomposition problem, Differential Geom. Appl. Proc. Conf. Aug. 28 – Sept. 1, Brno, 1995, Czech Republic, Masaryk Univ., Brno 1996, 45–50. (1995) MR1406322
  13. Mikeš J., Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. (New York) 78 3 (1996), 311–333. (1996) Zbl0866.53028MR1384327
  14. Mikeš J., Holomorphically projective mappings and their generalizations, J. Math. Sci. (New York) 89 3 (1998), 1334–1353. (1998) Zbl0983.53013MR1619720
  15. Mikeš J., Pokorná O., On holomorphically projective mappings onto Kählerian spaces, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. Zbl1023.53015MR1972433
  16. Mikeš J., Radulović Ž., Haddad M., Geodesic and holomorphically projective mappings of m -pseudo- and m -quasisymmetric Riemannian spaces, Russ. Math. 40 10 (1996), 28–32; Izv. Vyssh. Uchebn. Mat. 10 (413) (1996), 30–35. (1996) Zbl0890.53041MR1447076
  17. Mikeš J., Rachůnek L., T -semisymmetric spaces and concircular vector fields, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 187–193. (193.) MR1972434
  18. Mikeš J., Sinyukov N. S., On quasiplanar mappings of spaces of affine connection, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1(248) (1983), 55–61; (English) Sov. Math. 27 1 (1983), 63–70. (1983) Zbl0526.53013MR0694014
  19. Otsuki T., Tashiro Y., On curves in Kaehlerian spaces, Math. J. Okayama Univ. 4 (1954), 57–78. (1954) Zbl0057.14101MR0066024
  20. Petrov A. Z., New method in general relativity theory, Moscow, Nauka, 1966, 495p. (1966) 
  21. Sakaguchi T., On the holomorphically projective correspondence between Kählerian spaces preserving complex structure, Hokkaido Math. J. 3 (1974), 203–212. (1974) Zbl0305.53024MR0370411
  22. Shirokov P. A., Selected Work in Geometry, Kazan State Univ. Press, Kazan, 1966. (1966) 
  23. Sinyukov N. S., Geodesic mappings of Riemannian spaces, Moscow, Nauka, 1979, 256p. (1979) Zbl0637.53020MR0552022
  24. Škodová M., Mikeš J., Pokorná O., On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces, Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. Zbl1109.53019MR2152369
  25. Sobchuk V. S., Mikeš J., Pokorná O., On almost geodesic mappings π 2 between semisymmetric Riemannian spaces, Novi Sad J. Math. 29 3 (1999), 309–312. (1999) Zbl1012.53015MR1771008
  26. Yano K., Concircular geometry. I-IV, Proc. Imp. Acad. Tokyo 16 (1940), 195–200, 354–360, 442–448, 505–511. (1940) 
  27. Yano K., Differential geometry on complex and almost complex spaces, Oxford-London-New York-Paris-Frankfurt, Pergamon Press 1965, XII, 323p. (1965) Zbl0127.12405MR0187181

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.