On -planar mappings of (pseudo-) Riemannian manifolds
Irena Hinterleitner; Josef Mikeš; Patrik Peška
Archivum Mathematicum (2014)
- Volume: 050, Issue: 5, page 287-295
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHinterleitner, Irena, Mikeš, Josef, and Peška, Patrik. "On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds." Archivum Mathematicum 050.5 (2014): 287-295. <http://eudml.org/doc/262140>.
@article{Hinterleitner2014,
abstract = {We study special $F$-planar mappings between two $n$-dimensional (pseudo-) Riemannian manifolds. In 2003 Topalov introduced $PQ^\{\varepsilon \}$-projectivity of Riemannian metrics, $\varepsilon \ne 1,1+n$. Later these mappings were studied by Matveev and Rosemann. They found that for $\varepsilon =0$ they are projective. We show that $PQ^\{\varepsilon \}$-projective equivalence corresponds to a special case of $F$-planar mapping studied by Mikeš and Sinyukov (1983) and $\{F_2\}$-planar mappings (Mikeš, 1994), with $F=Q$. Moreover, the tensor $P$ is derived from the tensor $Q$ and the non-zero number $\varepsilon $. For this reason we suggest to rename $PQ^\{\varepsilon \}$ as $\{F_2^\{\varepsilon \}\}$. We use earlier results derived for $\{F\}$- and $\{F_2\}$-planar mappings and find new results. For these mappings we find the fundamental partial differential equations in closed linear Cauchy type form and we obtain new results for initial conditions.},
author = {Hinterleitner, Irena, Mikeš, Josef, Peška, Patrik},
journal = {Archivum Mathematicum},
keywords = {$F^\varepsilon _2$-planar mapping; $PQ^\varepsilon $-projective equivalence; $F$-planar mapping; fundamental equation; (pseudo-) Riemannian manifold; $F^\varepsilon _2$-planar mapping; $PQ^\varepsilon $-projective equivalence; -planar mapping; fundamental equation; (pseudo-)Riemannian manifold},
language = {eng},
number = {5},
pages = {287-295},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds},
url = {http://eudml.org/doc/262140},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Hinterleitner, Irena
AU - Mikeš, Josef
AU - Peška, Patrik
TI - On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 5
SP - 287
EP - 295
AB - We study special $F$-planar mappings between two $n$-dimensional (pseudo-) Riemannian manifolds. In 2003 Topalov introduced $PQ^{\varepsilon }$-projectivity of Riemannian metrics, $\varepsilon \ne 1,1+n$. Later these mappings were studied by Matveev and Rosemann. They found that for $\varepsilon =0$ they are projective. We show that $PQ^{\varepsilon }$-projective equivalence corresponds to a special case of $F$-planar mapping studied by Mikeš and Sinyukov (1983) and ${F_2}$-planar mappings (Mikeš, 1994), with $F=Q$. Moreover, the tensor $P$ is derived from the tensor $Q$ and the non-zero number $\varepsilon $. For this reason we suggest to rename $PQ^{\varepsilon }$ as ${F_2^{\varepsilon }}$. We use earlier results derived for ${F}$- and ${F_2}$-planar mappings and find new results. For these mappings we find the fundamental partial differential equations in closed linear Cauchy type form and we obtain new results for initial conditions.
LA - eng
KW - $F^\varepsilon _2$-planar mapping; $PQ^\varepsilon $-projective equivalence; $F$-planar mapping; fundamental equation; (pseudo-) Riemannian manifold; $F^\varepsilon _2$-planar mapping; $PQ^\varepsilon $-projective equivalence; -planar mapping; fundamental equation; (pseudo-)Riemannian manifold
UR - http://eudml.org/doc/262140
ER -
References
top- Chudá, H., Shiha, M., Conformal holomorphically projective mappings satisfying a certain initial condition, Miskolc Math. Notes 14 (2) (2013), 569–574. (2013) Zbl1299.53037MR3144093
- Hinterleitner, I., 10.5817/AM2012-5-333, Arch. Mat. (Brno) 48 (2012), 333–338. (2012) Zbl1289.53038MR3007616DOI10.5817/AM2012-5-333
- Hinterleitner, I., Mikeš, J., On -planar mappings of spaces with affine connections, Note Mat. 27 (2007), 111–118. (2007) MR2367758
- Hinterleitner, I., Mikeš, J., 10.1007/s10958-011-0316-8, J. Math. Sci. 174 (5) (2011), 537–554. (2011) DOI10.1007/s10958-011-0316-8
- Hinterleitner, I., Mikeš, J., 10.1007/s10958-011-0479-3, J. Math. Sci. 177 (2011), 546–550, transl. from Fundam. Prikl. Mat. 16 (2010), 47–54. (2011) MR2786490DOI10.1007/s10958-011-0479-3
- Hinterleitner, I., Mikeš, J., Geodesic Mappings and Einstein Spaces, Geometric Methods in Physics, Birkhäuser Basel, 2013, arXiv: 1201.2827v1 [math.DG], 2012. (2013) Zbl1268.53049MR3364052
- Hinterleitner, I., Mikeš, J., 10.5817/AM2013-5-295, Arch. Math. (Brno) 49 (5) (2013), 295–302. (2013) MR3159328DOI10.5817/AM2013-5-295
- Hinterleitner, I., Mikeš, J., Stránská, J., 10.3103/S1066369X08040026, Russ. Math. 52 (2008), 13–18, transl. from Izv. Vyssh. Uchebn. Zaved., Mat. (2008), 16–22. (2008) MR2445169DOI10.3103/S1066369X08040026
- Hrdina, J., Almost complex projective structures and their morphisms, Arch. Mat. (Brno) 45 (2009), 255–264. (2009) Zbl1212.53022MR2591680
- Hrdina, J., Slovák, J., 10.1007/s10455-006-9023-y, Ann. Global Anal. Geom. 29 (4) (2006), 349–360. (2006) MR2251428DOI10.1007/s10455-006-9023-y
- Hrdina, J., Slovák, J., Morphisms of almost product projective geometries, Proc. 10th Int. Conf. on Diff. Geom. and its Appl., DGA 2007, Olomouc. Hackensack, NJ: World Sci., 2008, pp. 253–261. (2008) MR2462798
- Hrdina, J., Vašík, P., Generalized geodesics on almost Cliffordian geometries, Balkan J. Geom. Appl. 17 (1) (2012), 41–48. (2012) Zbl1284.53031MR2911954
- Jukl, M., Juklová, L., Mikeš, J., 10.1007/s10958-011-0321-y, J. Math. Sci. (New York) 174 (2011), 627–640. (2011) DOI10.1007/s10958-011-0321-y
- Lami, R.J.K. al, Škodová, M., Mikeš, J., On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces, Arch. Math. (Brno) 42 (5) (2006), 291–299. (2006) Zbl1164.53317MR2322415
- Levi-Civita, T., Sulle transformationi delle equazioni dinamiche, Ann. Mat. Milano 24 Ser. 2 (1886), 255–300. (1886)
- Matveev, V., Rosemann, S., 10.1017/S0017089512000390, Glasgow Math. J. 55 (1) (2013), 131–138. (2013) MR3001335DOI10.1017/S0017089512000390
- Mikeš, J., On holomorphically projective mappings of Kählerian spaces, Ukr. Geom. Sb., Kharkov 23 (1980), 90–98. (1980) Zbl0463.53013
- Mikeš, J., Special -planar mappings of affinely connected spaces onto Riemannian spaces, Mosc. Univ. Math. Bull. 49 (1994), 15–21, translation from Vestn. Mosk. Univ., Ser. 1 (1994), 18–24. (1994) Zbl0896.53035MR1315721
- Mikeš, J., 10.1007/BF02414875, J. Math. Sci. (New York) 89 (1998), 1334–1353. (1998) MR1619720DOI10.1007/BF02414875
- Mikeš, J., Chudá, H., Hinterleitner, I., 10.1142/S0219887814500443, Int. J. Geom. Methods in Modern Phys. 11 (5) (2014), Article Number 1450044. (2014) MR3208853DOI10.1142/S0219887814500443
- Mikeš, J., Pokorná, O., On holomorphically projective mappings onto almost Hermitian spaces, 8th Int. Conf. Opava, 2001, pp. 43–48. (2001) Zbl1076.53506MR1978761
- Mikeš, J., Pokorná, O., On holomorphically projective mappings onto Kählerian spaces, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. (2002) MR1972433
- Mikeš, J., Shiha, M., Vanžurová, A., Invariant objects by holomorphically projective mappings of Kähler space, 8th Int. Conf. APLIMAT 2009: 8th Int. Conf. Proc., 2009, pp. 439–444. (2009)
- Mikeš, J., Sinyukov, N.S., On quasiplanar mappings of space of affine connection, Sov. Math. (1983), 63–70, translation from Izv. Vyssh. Uchebn. Zaved., Mat. (1983), 55–61. (1983) MR0694014
- Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic Mappings and some Generalizations, Palacky University Press, Olomouc, 2009. (2009) MR2682926
- Otsuki, T., Tashiro, Y., On curves in Kaehlerian spaces, Math. J. Okayama Univ. 4 (1954), 57–78. (1954) Zbl0057.14101MR0066024
- Petrov, A.Z., Simulation of physical fields, Gravitatsiya i Teor. Otnositenosti 4–5 (1968), 7–21. (1968) MR0285249
- Prvanović, M., Holomorphically projective transformations in a locally product space, Math. Balkanica (N.S.) 1 (1971), 195–213. (1971) MR0288710
- Sinyukov, N.S., Geodesic Mappings of Riemannian Spaces, Moscow: Nauka, 1979, 256pp. (1979) Zbl0637.53020MR0552022
- Škodová, M., Mikeš, J., Pokorná, O., On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces, Rend. Circ. Mat. Palermo (2) Suppl., vol. 75, 2005, pp. 309–316. (2005) Zbl1109.53019MR2152369
- Stanković, M.S., Zlatanović, M.L., Velimirović, L.S., 10.1007/s10587-010-0059-6, Czechoslovak Math. J. 60 (2010), 635–653. (2010) Zbl1224.53031MR2672406DOI10.1007/s10587-010-0059-6
- Topalov, P., 10.1063/1.1526939, J. Math. Phys. 44 (2) (2003), 913–929. (2003) Zbl1061.37042MR1953103DOI10.1063/1.1526939
- Yano, K., Differential geometry on complex and almost complex spaces, vol. XII, Pergamon Press, Oxford-London-New York-Paris-Frankfurt, 1965, 323pp. (1965) Zbl0127.12405MR0187181
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.