Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces

Dodzi Attimu; Toka Diagana

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 1, page 37-60
  • ISSN: 0010-2628

Abstract

top
This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on c 0 . For that, our first task consists of introducing a new class of linear operators denoted W ( c 0 ( J , ω , 𝕂 ) ) and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.

How to cite

top

Attimu, Dodzi, and Diagana, Toka. "Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces." Commentationes Mathematicae Universitatis Carolinae 50.1 (2009): 37-60. <http://eudml.org/doc/32479>.

@article{Attimu2009,
abstract = {This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on $c_0$. For that, our first task consists of introducing a new class of linear operators denoted $W(c_0(\{J\},\omega ,\mathbb \{K\}))$ and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.},
author = {Attimu, Dodzi, Diagana, Toka},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus; non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus},
language = {eng},
number = {1},
pages = {37-60},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces},
url = {http://eudml.org/doc/32479},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Attimu, Dodzi
AU - Diagana, Toka
TI - Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 1
SP - 37
EP - 60
AB - This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on $c_0$. For that, our first task consists of introducing a new class of linear operators denoted $W(c_0({J},\omega ,\mathbb {K}))$ and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.
LA - eng
KW - non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus; non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus
UR - http://eudml.org/doc/32479
ER -

References

top
  1. Attimu D., Linear operators on some non-archimedean Hilbert spaces and their spectral theory, PhD Thesis, Howard University, Washington DC, 2008. MR2399075
  2. Attimu D., Diagana T., Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II, Comment. Math. Univ. Carolin. 48 (2007), 3 431--442. (2007) Zbl1199.47334MR2374125
  3. Baker R., A certain p -adic spectral theorem, arXiv.math /070353901 [MATH.FA] (2007). 
  4. Conway J.B., A Course in Functional Analysis, Graduate Texts in Mathematics 96, Springer, New York, 1985. Zbl0706.46003MR0768926
  5. Davies E.B., Spectral Theory and Differential Operators, Cambridge University Press, Cambridge, 1995. Zbl0893.47004MR1349825
  6. Diagana T., 10.5802/ambp.203, Ann. Math. Blaise Pascal 12 (2005), 1 205--222. (2005) Zbl1087.47061MR2126449DOI10.5802/ambp.203
  7. Diagana T., 10.5802/ambp.217, Ann. Math. Blaise Pascal 13 (2006), 105--106. (2006) MR2233015DOI10.5802/ambp.217
  8. Diagana T., Representation of bilinear forms in non-archimedean Hilbert space by linear operators, Comment. Math. Univ. Carolin. 47 (2006), 4 695--705. (2006) Zbl1150.47408MR2337423
  9. Diagana T., An Introduction to Classical and p -adic Theory of Linear Operators and Applications, Nova Science Publishers, New York, 2006. Zbl1118.47323MR2269328
  10. Diarra B., Ludkovsky S., 10.1155/S016117120201150X, Int. J. Math. Math. Sci. 31 (2002), 7 421--442. (2002) Zbl0999.47063MR1926812DOI10.1155/S016117120201150X
  11. Diarra B., An Operator on Some Ultrametric Hilbert spaces, J. Anal. 6 (1998), 55--74. (1998) Zbl0930.47049MR1671148
  12. Diarra B., Geometry of the p -adic Hilbert spaces, preprint, 1999. 
  13. Kalish G., 10.2307/1969224, Ann. of Math. 48 (1947), 2 180--192. (1947) MR0019227DOI10.2307/1969224
  14. Kato T., Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer, New York, 1966. Zbl0836.47009MR0203473
  15. Khrennikov A.Y., p -Adic Valued Distributions in Mathematical Physics, Mathematics and Its Applications, Vol. 309, Kluwer Academic, Dordrecht, 1994. Zbl0833.46061MR1325924
  16. Koblitz N., p -adic Analysis: a Short Course on Recent Work, Cambridge University Press, Cambridge, 1980. Zbl0439.12011MR0591682
  17. Krasner M., Prolongement analytique uniforme et multiforme dans les corps valués complets, Colloque. Int. CNRS 143, Paris, 1966, pp. 97--142. Zbl0139.26202MR0204404
  18. Ochsenius H., Schikhof W.H., Banach Spaces Over Fields with an Infinite Rank Valuation, -adic Functional Analysis (Poznan, 1998), Marcel Dekker, New York, 1999, pp. 233–293. Zbl0938.46056MR1703500
  19. van Rooij A.C.M., Non-Archimedean Functional Analysis, Marcel Dekker Inc, New York, 1978. Zbl0396.46061MR0512894
  20. Serre J.-P., 10.1007/BF02684276, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 69--85. (1962) MR0144186DOI10.1007/BF02684276
  21. Shnirel'man L.G., On Functions in Normed, Algebraically Closed Fields, Izv. Akad. Nauk SSSR, Ser. Mat. 2 (1938), 5--6 487--498. (1938) 
  22. Shamseddine K., Berz M., 10.5802/ambp.209, Ann. Math. Blaise Pascal 12 (2005), 2 309--329. (2005) Zbl1087.26020MR2182072DOI10.5802/ambp.209
  23. Vishik M., 10.1007/BF02249122, J. Soviet Math. 30 (1985), 2513--2554. (1985) MR0770941DOI10.1007/BF02249122

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.