Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 1, page 37-60
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAttimu, Dodzi, and Diagana, Toka. "Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces." Commentationes Mathematicae Universitatis Carolinae 50.1 (2009): 37-60. <http://eudml.org/doc/32479>.
@article{Attimu2009,
abstract = {This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on $c_0$. For that, our first task consists of introducing a new class of linear operators denoted $W(c_0(\{J\},\omega ,\mathbb \{K\}))$ and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.},
author = {Attimu, Dodzi, Diagana, Toka},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus; non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus},
language = {eng},
number = {1},
pages = {37-60},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces},
url = {http://eudml.org/doc/32479},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Attimu, Dodzi
AU - Diagana, Toka
TI - Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 1
SP - 37
EP - 60
AB - This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on $c_0$. For that, our first task consists of introducing a new class of linear operators denoted $W(c_0({J},\omega ,\mathbb {K}))$ and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.
LA - eng
KW - non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus; non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus
UR - http://eudml.org/doc/32479
ER -
References
top- Attimu D., Linear operators on some non-archimedean Hilbert spaces and their spectral theory, PhD Thesis, Howard University, Washington DC, 2008. MR2399075
- Attimu D., Diagana T., Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II, Comment. Math. Univ. Carolin. 48 (2007), 3 431--442. (2007) Zbl1199.47334MR2374125
- Baker R., A certain -adic spectral theorem, arXiv.math /070353901 [MATH.FA] (2007).
- Conway J.B., A Course in Functional Analysis, Graduate Texts in Mathematics 96, Springer, New York, 1985. Zbl0706.46003MR0768926
- Davies E.B., Spectral Theory and Differential Operators, Cambridge University Press, Cambridge, 1995. Zbl0893.47004MR1349825
- Diagana T., 10.5802/ambp.203, Ann. Math. Blaise Pascal 12 (2005), 1 205--222. (2005) Zbl1087.47061MR2126449DOI10.5802/ambp.203
- Diagana T., 10.5802/ambp.217, Ann. Math. Blaise Pascal 13 (2006), 105--106. (2006) MR2233015DOI10.5802/ambp.217
- Diagana T., Representation of bilinear forms in non-archimedean Hilbert space by linear operators, Comment. Math. Univ. Carolin. 47 (2006), 4 695--705. (2006) Zbl1150.47408MR2337423
- Diagana T., An Introduction to Classical and -adic Theory of Linear Operators and Applications, Nova Science Publishers, New York, 2006. Zbl1118.47323MR2269328
- Diarra B., Ludkovsky S., 10.1155/S016117120201150X, Int. J. Math. Math. Sci. 31 (2002), 7 421--442. (2002) Zbl0999.47063MR1926812DOI10.1155/S016117120201150X
- Diarra B., An Operator on Some Ultrametric Hilbert spaces, J. Anal. 6 (1998), 55--74. (1998) Zbl0930.47049MR1671148
- Diarra B., Geometry of the -adic Hilbert spaces, preprint, 1999.
- Kalish G., 10.2307/1969224, Ann. of Math. 48 (1947), 2 180--192. (1947) MR0019227DOI10.2307/1969224
- Kato T., Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer, New York, 1966. Zbl0836.47009MR0203473
- Khrennikov A.Y., -Adic Valued Distributions in Mathematical Physics, Mathematics and Its Applications, Vol. 309, Kluwer Academic, Dordrecht, 1994. Zbl0833.46061MR1325924
- Koblitz N., -adic Analysis: a Short Course on Recent Work, Cambridge University Press, Cambridge, 1980. Zbl0439.12011MR0591682
- Krasner M., Prolongement analytique uniforme et multiforme dans les corps valués complets, Colloque. Int. CNRS 143, Paris, 1966, pp. 97--142. Zbl0139.26202MR0204404
- Ochsenius H., Schikhof W.H., Banach Spaces Over Fields with an Infinite Rank Valuation, -adic Functional Analysis (Poznan, 1998), Marcel Dekker, New York, 1999, pp. 233–293. Zbl0938.46056MR1703500
- van Rooij A.C.M., Non-Archimedean Functional Analysis, Marcel Dekker Inc, New York, 1978. Zbl0396.46061MR0512894
- Serre J.-P., 10.1007/BF02684276, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 69--85. (1962) MR0144186DOI10.1007/BF02684276
- Shnirel'man L.G., On Functions in Normed, Algebraically Closed Fields, Izv. Akad. Nauk SSSR, Ser. Mat. 2 (1938), 5--6 487--498. (1938)
- Shamseddine K., Berz M., 10.5802/ambp.209, Ann. Math. Blaise Pascal 12 (2005), 2 309--329. (2005) Zbl1087.26020MR2182072DOI10.5802/ambp.209
- Vishik M., 10.1007/BF02249122, J. Soviet Math. 30 (1985), 2513--2554. (1985) MR0770941DOI10.1007/BF02249122
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.