Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 3, page 431-442
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAttimu, Dodzi, and Diagana, Toka. "Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II." Commentationes Mathematicae Universitatis Carolinae 48.3 (2007): 431-442. <http://eudml.org/doc/250222>.
@article{Attimu2007,
abstract = {The paper considers the representation of non-degenerate bilinear forms on the non-Archimedean Hilbert space $\mathbb \{E\}_\omega \times \mathbb \{E\}_\omega $ by linear operators. More precisely, upon making some suitable assumptions we prove that if $\varphi $ is a non-degenerate bilinear form on $\mathbb \{E\}_\omega \times \mathbb \{E\}_\omega $, then $\varphi $ is representable by a unique linear operator $A$ whose adjoint operator $A^*$ exists.},
author = {Attimu, Dodzi, Diagana, Toka},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {non-Archimedean Hilbert space; bilinear form; continuous linear functionals; non-Archimedean Riesz theorem; bounded bilinear form; stable unbounded bilinear form; unstable unbounded bilinear form; non-Archimedean Hilbert space; bilinear form; continuous linear functionals; non-Archimedean Riesz theorem},
language = {eng},
number = {3},
pages = {431-442},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II},
url = {http://eudml.org/doc/250222},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Attimu, Dodzi
AU - Diagana, Toka
TI - Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 3
SP - 431
EP - 442
AB - The paper considers the representation of non-degenerate bilinear forms on the non-Archimedean Hilbert space $\mathbb {E}_\omega \times \mathbb {E}_\omega $ by linear operators. More precisely, upon making some suitable assumptions we prove that if $\varphi $ is a non-degenerate bilinear form on $\mathbb {E}_\omega \times \mathbb {E}_\omega $, then $\varphi $ is representable by a unique linear operator $A$ whose adjoint operator $A^*$ exists.
LA - eng
KW - non-Archimedean Hilbert space; bilinear form; continuous linear functionals; non-Archimedean Riesz theorem; bounded bilinear form; stable unbounded bilinear form; unstable unbounded bilinear form; non-Archimedean Hilbert space; bilinear form; continuous linear functionals; non-Archimedean Riesz theorem
UR - http://eudml.org/doc/250222
ER -
References
top- Basu S., Diagana T., Ramaroson F., A -adic version of Hilbert-Schmidt operators and applications, J. Anal. Appl. 2 (2004), 3 173-188. (2004) Zbl1077.47061MR2092641
- de Bivar-Weinholtz A., Lapidus M.L., Product formula for resolvents of normal operator and the modified Feynman integral, Proc. Amer. Math. Soc. 110 (1990), 2 449-460. (1990) MR1013964
- Diagana T., Representation of bilinear forms in non-Archimedean Hilbert space by linear operators, Comment. Math. Univ. Carolin. 47 (2006), 4 695-705. (2006) Zbl1150.47408MR2337423
- Diagana T., Towards a theory of some unbounded linear operators on -adic Hilbert spaces and applications, Ann. Math. Blaise Pascal 12 (2005), 1 205-222. (2005) Zbl1087.47061MR2126449
- Diagana T., Erratum to: “Towards a theory of some unbounded linear operators on -adic Hilbert spaces and applications", Ann. Math. Blaise Pascal 13 (2006), 105-106. (2006) MR2233015
- Diagana T., Bilinear forms on non-Archimedean Hilbert spaces, preprint, 2005.
- Diagana T., Fractional powers of the algebraic sum of normal operators, Proc. Amer. Math. Soc. 134 (2006), 6 1777-1782. (2006) Zbl1092.47027MR2207493
- Diagana T., An Introduction to Classical and -adic Theory of Linear Operators and Applications, Nova Science Publishers, New York, 2006. Zbl1118.47323MR2269328
- Diarra B., An operator on some ultrametric Hilbert spaces, J. Analysis 6 (1998), 55-74. (1998) Zbl0930.47049MR1671148
- Diarra B., Geometry of the -adic Hilbert spaces, preprint, 1999.
- Johnson G.W., Lapidus M.L., The Feynman Integral and Feynman Operational Calculus, Oxford Univ. Press, Oxford, 2000. MR1771173
- Kato T., Perturbation Theory for Linear Operators, Springer, New York, 1966. Zbl0836.47009MR0203473
- Ochsenius H., Schikhof W.H., Banach Spaces Over Fields with an Infinite Rank Valuation, -adic Functional Analysis, (Poznan, 1998), Marcel Dekker, New York, 1999, pp.233-293. MR1703500
- van Rooij A.C.M., Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978. Zbl0396.46061MR0512894
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.