Strict minimizers of order in nonsmooth optimization problems
Tadeusz Antczak; Krzysztof Kisiel
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 2, page 213-232
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAntczak, Tadeusz, and Kisiel, Krzysztof. "Strict minimizers of order $m$ in nonsmooth optimization problems." Commentationes Mathematicae Universitatis Carolinae 47.2 (2006): 213-232. <http://eudml.org/doc/249854>.
@article{Antczak2006,
abstract = {In the paper, some sufficient optimality conditions for strict minima of order $m$ in constrained nonlinear mathematical programming problems involving (locally Lipschitz) $(F,\rho )$-convex functions of order $m$ are presented. Furthermore, the concept of strict local minimizer of order $m$ is also used to state various duality results in the sense of Mond-Weir and in the sense of Wolfe for such nondifferentiable optimization problems.},
author = {Antczak, Tadeusz, Kisiel, Krzysztof},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonsmooth programming; strict local minimizer of order $m$; Clarke’s generalized gradient; $(F, \rho )$-convex function of order $m$ with respect to $\theta $; nonsmooth programming; strict local minimizer of order },
language = {eng},
number = {2},
pages = {213-232},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Strict minimizers of order $m$ in nonsmooth optimization problems},
url = {http://eudml.org/doc/249854},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Antczak, Tadeusz
AU - Kisiel, Krzysztof
TI - Strict minimizers of order $m$ in nonsmooth optimization problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 2
SP - 213
EP - 232
AB - In the paper, some sufficient optimality conditions for strict minima of order $m$ in constrained nonlinear mathematical programming problems involving (locally Lipschitz) $(F,\rho )$-convex functions of order $m$ are presented. Furthermore, the concept of strict local minimizer of order $m$ is also used to state various duality results in the sense of Mond-Weir and in the sense of Wolfe for such nondifferentiable optimization problems.
LA - eng
KW - nonsmooth programming; strict local minimizer of order $m$; Clarke’s generalized gradient; $(F, \rho )$-convex function of order $m$ with respect to $\theta $; nonsmooth programming; strict local minimizer of order
UR - http://eudml.org/doc/249854
ER -
References
top- Auslender A., Stability in mathematical programming with nondifferentiable data, SIAM J. Control Optim. 22 (1984), 239-254. (1984) Zbl0538.49020MR0732426
- Bazaraa M.S., Sherali H.D., Shetty C.M., Nonlinear Programming: Theory and Algorithms, John Wiley and Sons, New York, 1991. Zbl1140.90040MR2218478
- Ben-Israel A., Mond B., What is invexity?, J. Austral. Math. Soc. Ser. B 28 (1986), 1-9. (1986) Zbl0603.90119MR0846778
- Clarke F.H., Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983. Zbl0696.49002MR0709590
- Craven B.D., Nonsmooth multiobjective programming, Numer. Funct. Anal. Optim. 10 1-2 (1989), 49-64. (1989) Zbl0645.90076MR0978802
- Cromme L., Strong uniqueness: a far-reaching criterion for the convergence of iterative procedures, Numer. Math. 29 (1978), 179-193. (1978) MR0461890
- Egudo R.R., Mond B., Duality with generalized convexity, J. Austral. Math. Soc. Ser. B 28 (1986), 10-21. (1986) Zbl0608.49012MR0846779
- Hiriart-Urruty J.-B., Refinements of necessary optimality conditions in nondifferentiable programming I, Appl. Math. Optim. 5 (1979), 63-82. (1979) Zbl0389.90088MR0526428
- Hanson M.A., On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), 545-550. (1981) Zbl0463.90080MR0614849
- Hanson M.A., Mond B., Further generalizations of convexity in mathematical programming, J. Inform. Optim. Sci. 3 (1982), 25-32. (1982) Zbl0475.90069MR0713163
- Jeyakumar V., Strong and weak invexity in mathematical programming, Math. Oper. Res. 55 (1985), 109-125. (1985) Zbl0566.90086MR0811672
- Jeyakumar V., Equivalence of a saddle-points and optima, and duality for a class of non-smooth non-convex problems, J. Math. Anal. Appl. 130 (1988), 334-343. (1988) MR0929939
- Kaul R.N., Suneja S.K., Lalitha C.S., Generalized nonsmooth invexity, J. Inform. Optim. Sci. 15 (1994), 1-17. (1994) Zbl0852.90113MR1262012
- Klatte D., Stable local minimizers in semi-infinite optimization: regularity and second-order conditions, J. Comput. Appl. Math. 56 (1994), 137-157. (1994) Zbl0823.90121MR1338641
- Mangasarian O.L., Nonlinear Programming, McGraw-Hill, New York, 1969. Zbl0833.90108MR0252038
- Mond B., Weir T., Generalized concavity and duality, in: Generalized Concavity in Optimization and Economics, edited by S. Schaible and W.T. Ziemba, Academic Press, New York, 1981, pp.263-279. Zbl0619.90062MR0652702
- Preda V., On efficiency and duality for multiobjective programs, J. Math. Anal. Appl. 166 (1992), 365-377. (1992) Zbl0764.90074MR1160932
- Singer I., Abstract Convex Analysis, John Wiley and Sons, New York, 1997, . MR1461544
- Studniarski M., Necessary and sufficient conditions for isolated local minima of nonsmooth functions, SIAM J. Control Optim. 24 (1986), 1044-1049. (1986) Zbl0604.49017MR0854069
- Studniarski M., Sufficient conditions for the stability of local minimum points in nonsmooth optimization, Optimization 20 (1989), 27-35. (1989) Zbl0679.90072MR0977217
- Studniarski M., Characterizations of strict local minima for some nonlinear programming problems, Nonlinear Anal. 30 (1997), 5363-5367 (Proc. 2nd World Congress of Nonlinear Analysts). (1997) Zbl0914.90243MR1726039
- Ward D.E., Characterizations of strict local minima and necessary conditions for weak sharp minima, J. Optim. Theory Appl. 80 (1994), 551-571. (1994) Zbl0797.90101MR1265176
- Wolfe P., A duality theorem for nonlinear programming, Quart. Appl. Math. 19 (1961), 239-244. (1961) MR0135625
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.