Non-singular precovers over polynomial rings
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 3, page 369-377
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBican, Ladislav. "Non-singular precovers over polynomial rings." Commentationes Mathematicae Universitatis Carolinae 47.3 (2006): 369-377. <http://eudml.org/doc/249856>.
@article{Bican2006,
abstract = {One of the results in my previous paper On torsionfree classes which are not precover classes, preprint, Corollary 3, states that for every hereditary torsion theory $\tau $ for the category $R$-mod with $\tau \ge \sigma $, $\sigma $ being Goldie’s torsion theory, the class of all $\tau $-torsionfree modules forms a (pre)cover class if and only if $\tau $ is of finite type. The purpose of this note is to show that all members of the countable set $\mathfrak \{M\} = \lbrace R, R/\sigma (R), R[x_1,\dots ,x_n], R[x_1,\dots ,x_n]/\sigma (R[x_1,\dots ,x_n]), n <\omega \rbrace $ of rings have the property that the class of all non-singular left modules forms a (pre)cover class if and only if this holds for an arbitrary member of this set.},
author = {Bican, Ladislav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hereditary torsion theory; torsion theory of finite type; Goldie's torsion theory; non-singular module; non-singular ring; precover class; cover class; hereditary torsion theories; torsion theories of finite type; Goldie torsion theory; non-singular modules; non-singular rings; precover classes; cover classes},
language = {eng},
number = {3},
pages = {369-377},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Non-singular precovers over polynomial rings},
url = {http://eudml.org/doc/249856},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Bican, Ladislav
TI - Non-singular precovers over polynomial rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 3
SP - 369
EP - 377
AB - One of the results in my previous paper On torsionfree classes which are not precover classes, preprint, Corollary 3, states that for every hereditary torsion theory $\tau $ for the category $R$-mod with $\tau \ge \sigma $, $\sigma $ being Goldie’s torsion theory, the class of all $\tau $-torsionfree modules forms a (pre)cover class if and only if $\tau $ is of finite type. The purpose of this note is to show that all members of the countable set $\mathfrak {M} = \lbrace R, R/\sigma (R), R[x_1,\dots ,x_n], R[x_1,\dots ,x_n]/\sigma (R[x_1,\dots ,x_n]), n <\omega \rbrace $ of rings have the property that the class of all non-singular left modules forms a (pre)cover class if and only if this holds for an arbitrary member of this set.
LA - eng
KW - hereditary torsion theory; torsion theory of finite type; Goldie's torsion theory; non-singular module; non-singular ring; precover class; cover class; hereditary torsion theories; torsion theories of finite type; Goldie torsion theory; non-singular modules; non-singular rings; precover classes; cover classes
UR - http://eudml.org/doc/249856
ER -
References
top- Anderson F.W., Fuller K.R., Rings and Categories of Modules, Graduate Texts in Mathematics, vol.13 Springer, New York-Heidelberg (1974). (1974) Zbl0301.16001MR0417223
- Bican L., Torsionfree precovers, Contributions to General Algebra 15, Proceedings of the Klagenfurt Conference 2003 (AAA 66), Verlag Johannes Heyn, Klagenfurt, 2004, pp.1-6. Zbl1074.16002MR2080845
- Bican L., Precovers and Goldie's torsion theory, Math. Bohemica 128 (2003), 395-400. (2003) Zbl1057.16027MR2032476
- Bican L., On torsionfree classes which are not precover classes, preprint. Zbl1166.16013MR2411109
- Bican L., El Bashir R., Enochs E., All modules have flat covers, Proc. London Math. Soc. 33 (2001), 649-652. (2001) Zbl1029.16002MR1832549
- Bican L., Torrecillas B., Precovers, Czechoslovak Math. J. 53 (128) (2003), 191-203. (2003) Zbl1016.16003MR1962008
- Bican L., Torrecillas B., On covers, J. Algebra 236 (2001), 645-650. (2001) Zbl0973.16002MR1813494
- Bican L., Kepka T., Němec P., Rings, Modules, and Preradicals, Marcel Dekker New York (1982). (1982) MR0655412
- Golan J., Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics, 29 Longman Scientific and Technical, Harlow (1986). (1986) Zbl0657.16017MR0880019
- Rim S.H., Teply M.L., On coverings of modules, Tsukuba J. Math. 24 (2000), 15-20. (2000) Zbl0985.16017MR1791327
- Teply M.L., Torsion-free covers II, Israel J. Math. 23 (1976), 132-136. (1976) Zbl0321.16014MR0417245
- Teply M.L., Some aspects of Goldie's torsion theory, Pacific J. Math. 29 (1969), 447-459. (1969) Zbl0174.06803MR0244323
- Xu J., Flat Covers of Modules, Lecture Notes in Mathematics 1634 Springer, Berlin-Heidelberg-New York (1996). (1996) Zbl0860.16002MR1438789
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.