Weak continuity properties of topologized groups

J. Cao; R. Drozdowski; Zbigniew Piotrowski

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 1, page 133-148
  • ISSN: 0011-4642

Abstract

top
We explore (weak) continuity properties of group operations. For this purpose, the Novak number and developability number are applied. It is shown that if ( G , · , τ ) is a regular right (left) semitopological group with dev ( G ) < Nov ( G ) such that all left (right) translations are feebly continuous, then ( G , · , τ ) is a topological group. This extends several results in literature.

How to cite

top

Cao, J., Drozdowski, R., and Piotrowski, Zbigniew. "Weak continuity properties of topologized groups." Czechoslovak Mathematical Journal 60.1 (2010): 133-148. <http://eudml.org/doc/37996>.

@article{Cao2010,
abstract = {We explore (weak) continuity properties of group operations. For this purpose, the Novak number and developability number are applied. It is shown that if $(G, \cdot ,\tau )$ is a regular right (left) semitopological group with $\mathop \{\{\rm dev\}\}(G)<\mathop \{\{\rm Nov\}\}(G)$ such that all left (right) translations are feebly continuous, then $(G,\cdot ,\tau )$ is a topological group. This extends several results in literature.},
author = {Cao, J., Drozdowski, R., Piotrowski, Zbigniew},
journal = {Czechoslovak Mathematical Journal},
keywords = {developability number; feebly continuous; nearly continuous; Novak number; paratopological group; semitopological group; topological group; developability number; feebly continuous; nearly continuous; Novak number; paratopological group; semitopological group; topological group},
language = {eng},
number = {1},
pages = {133-148},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak continuity properties of topologized groups},
url = {http://eudml.org/doc/37996},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Cao, J.
AU - Drozdowski, R.
AU - Piotrowski, Zbigniew
TI - Weak continuity properties of topologized groups
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 133
EP - 148
AB - We explore (weak) continuity properties of group operations. For this purpose, the Novak number and developability number are applied. It is shown that if $(G, \cdot ,\tau )$ is a regular right (left) semitopological group with $\mathop {{\rm dev}}(G)<\mathop {{\rm Nov}}(G)$ such that all left (right) translations are feebly continuous, then $(G,\cdot ,\tau )$ is a topological group. This extends several results in literature.
LA - eng
KW - developability number; feebly continuous; nearly continuous; Novak number; paratopological group; semitopological group; topological group; developability number; feebly continuous; nearly continuous; Novak number; paratopological group; semitopological group; topological group
UR - http://eudml.org/doc/37996
ER -

References

top
  1. Andrijevi&apos;c, D., Semi-preopen sets, Mat. Ves. 38 (1986), 24-32. (1986) 
  2. Arhangel'skii, A. V., Mappings and spaces, Russ. Math. Surv. 21 (1966), 115-162. (1966) MR0227950
  3. Arhangel'skii, A. V., Reznichenko, E. A., 10.1016/j.topol.2003.08.035, Topology Appl. 151 (2005), 107-119. (2005) Zbl1077.54023MR2139745DOI10.1016/j.topol.2003.08.035
  4. Banakh, T., Ravsky, O., Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and Their Applications. Proc. Third International Algebraic Conference, Kiev, Ukraine, July 2-8, 2001 Instytut Matematyky NAN Kiev (2002), 140-153. (2002) Zbl1098.22004MR2210489
  5. Banakh, T., Ravsky, S., On subgroups of saturated or totally bounded paratopological groups, Algebra Discrete Math. (2003), 1-20. (2003) Zbl1061.22003MR2070399
  6. Bella, A., Some remarks on the Novak number, General topology and its relations to modern analysis and algebra VI (Prague, 1986) Heldermann Berlin (1988), 43-48. (1988) Zbl0634.54004MR0952589
  7. Bohn, E., Lee, J., 10.2307/2313342, Am. Math. Mon. 72 (1965), 996-998. (1965) Zbl0134.03601MR0190259DOI10.2307/2313342
  8. Bourbaki, N., Elements of Mathematics, General Topology, Chapters 1-4, Springer Berlin (1989). (1989) Zbl0683.54003MR0979294
  9. Bouziad, A., 10.1016/0166-8641(93)90074-N, Topology Appl. 50 (1993), 73-80. (1993) MR1217698DOI10.1016/0166-8641(93)90074-N
  10. Bouziad, A., 10.1016/0166-8641(95)00039-9, Topology Appl. 71 (1996), 119-124. (1996) Zbl0855.22006MR1399551DOI10.1016/0166-8641(95)00039-9
  11. Cao, J., Greenwood, S., 10.4995/agt.2006.1928, Appl. Gen. Topol. 7 (2006), 253-264. (2006) Zbl1114.54021MR2295174DOI10.4995/agt.2006.1928
  12. Engelking, R., General Topology. Revised and completed edition, Heldermann-Verlag Berlin (1989). (1989) MR1039321
  13. Ferri, S., Hernández, S., Wu, T. S., 10.1016/j.topol.2005.04.007, Topology Appl. 153 (2006), 1451-1457. (2006) MR2211210DOI10.1016/j.topol.2005.04.007
  14. Frolík, Z., Remarks concerning the invariance of Baire spaces under mappings, Czechoslovak Math. J. 11 (1961), 381-385. (1961) MR0133098
  15. Gentry, K. R., Hoyle, H. B., Somewhat continuous functions, Czechoslovak Math. J. 21 (1971), 5-12. (1971) Zbl0222.54010MR0278269
  16. Guran, I., Cardinal invariants of paratopological grups, 2nd International Algebraic Conference in Ukraine Vinnytsia (1999). (1999) 
  17. J. L. Kelley, I. Namioka, W. F. Donoghue jun., K. R. Lucas, B. J. Pettis, T. E. Poulsen, G. B. Price, W. Robertson, W. R. Scott, K. T. Smith, Linear Topological Spaces, D. Van Nostarand Company, Inc. Princeton (1963). (1963) MR0166578
  18. Kempisty, S., 10.4064/fm-19-1-184-197, Fundam. Math. 19 (1932), 184-197 French. (1932) Zbl0005.19802DOI10.4064/fm-19-1-184-197
  19. Kenderov, P. S., Kortezov, I. S., Moors, W. B., 10.1016/S0166-8641(99)00152-2, Topology Appl. 109 (2001), 157-165. (2001) Zbl0976.22003MR1806330DOI10.1016/S0166-8641(99)00152-2
  20. Lau, A. T.-M., Loy, R. J., 10.1016/j.jfa.2005.04.006, J. Funct. Anal. 225 (2005), 263-300. (2005) Zbl1098.46035MR2152500DOI10.1016/j.jfa.2005.04.006
  21. Liu, C., A note on paratopological group, Commentat. Math. Univ. Carol. 47 (2006), 633-640. (2006) MR2337418
  22. Mercourakis, S., Negrepontis, S., Banach Spaces and Topology. II. Recent Progress in General Topology (Prague, 1991), North-Holland Amsterdam (1992), 493-536. (1992) MR1229137
  23. Montgomery, D., 10.1090/S0002-9904-1936-06456-6, Bull. Am. Math. Soc. 42 (1936), 879-882. (1936) Zbl0015.39403MR1563458DOI10.1090/S0002-9904-1936-06456-6
  24. Neubrunn, T., A generalized continuity and product spaces, Math. Slovaca 26 (1976), 97-99. (1976) Zbl0318.54008MR0436064
  25. Neubrunn, T., 10.2307/44151947, Real Anal. Exch. 14 (1989), 259-306. (1989) Zbl0679.26003MR0995972DOI10.2307/44151947
  26. Piotrowski, Z., Quasi-continuity and product spaces, Proc. Int. Conf. on Geometric Topology, Warszawa 1978 PWN Warsaw (1980), 349-352. (1980) Zbl0481.54007MR0656769
  27. Piotrowski, Z., 10.2307/44151750, Real Anal. Exch. 11 (1985-86), 293-322. (1985) Zbl0606.54009MR0844254DOI10.2307/44151750
  28. Piotrowski, Z., 10.2307/44152002, Real Anal. Exch. 15 (1990), 248-258. (1990) Zbl0702.54009MR1042540DOI10.2307/44152002
  29. Piotrowski, Z., Separate and joint continuity in Baire groups, Tatra Mt. Math. Publ. 14 (1998), 109-116. (1998) Zbl0938.22001MR1651201
  30. Pták, V., 10.24033/bsmf.1498, Bull. Soc. Math. Fr. 86 (1958), 41-74. (1958) MR0105606DOI10.24033/bsmf.1498
  31. Ravsky, O., Paratopological groups. II, Math. Stud. 17 (2002), 93-101. (2002) Zbl1018.22001MR1932275
  32. Rothmann, D. D., 10.2307/2319315, Am. Math. Mon. 81 (1974), 1018-1019. (1974) Zbl0292.26001MR0350705DOI10.2307/2319315
  33. Ruppert, W., Compact Semitopological Semigroups: An Intrinsic Theory. Lecture Notes in Mathematics Vol. 1079, Springer (1984). (1984) MR0762985
  34. Solecki, S., Srivastava, S. M., 10.1016/S0166-8641(96)00119-8, Topology Appl. 77 (1997), 65-75. (1997) Zbl0882.22001MR1443429DOI10.1016/S0166-8641(96)00119-8
  35. Talagrand, M., 10.1007/BF01456180, Math. Ann. 270 (1985), 159-164 French. (1985) Zbl0582.54008MR0771977DOI10.1007/BF01456180
  36. Tkachenko, M., Paratopological groups versus topological groups, Lecture at Advances in Set-Theoretic Topology. Conference in Honour of Tsugunori Nogura on his 60th Birthday, Erice, June 2008. 
  37. Zelazko, W., A theorem on B 0 division algebras, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 373-375. (1960) Zbl0095.31303MR0125901
  38. Zelazko, W., A theorem on B 0 division algebras, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 373-375. (1960) Zbl0095.31303MR0125901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.