Weak continuity properties of topologized groups
J. Cao; R. Drozdowski; Zbigniew Piotrowski
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 1, page 133-148
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCao, J., Drozdowski, R., and Piotrowski, Zbigniew. "Weak continuity properties of topologized groups." Czechoslovak Mathematical Journal 60.1 (2010): 133-148. <http://eudml.org/doc/37996>.
@article{Cao2010,
abstract = {We explore (weak) continuity properties of group operations. For this purpose, the Novak number and developability number are applied. It is shown that if $(G, \cdot ,\tau )$ is a regular right (left) semitopological group with $\mathop \{\{\rm dev\}\}(G)<\mathop \{\{\rm Nov\}\}(G)$ such that all left (right) translations are feebly continuous, then $(G,\cdot ,\tau )$ is a topological group. This extends several results in literature.},
author = {Cao, J., Drozdowski, R., Piotrowski, Zbigniew},
journal = {Czechoslovak Mathematical Journal},
keywords = {developability number; feebly continuous; nearly continuous; Novak number; paratopological group; semitopological group; topological group; developability number; feebly continuous; nearly continuous; Novak number; paratopological group; semitopological group; topological group},
language = {eng},
number = {1},
pages = {133-148},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak continuity properties of topologized groups},
url = {http://eudml.org/doc/37996},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Cao, J.
AU - Drozdowski, R.
AU - Piotrowski, Zbigniew
TI - Weak continuity properties of topologized groups
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 133
EP - 148
AB - We explore (weak) continuity properties of group operations. For this purpose, the Novak number and developability number are applied. It is shown that if $(G, \cdot ,\tau )$ is a regular right (left) semitopological group with $\mathop {{\rm dev}}(G)<\mathop {{\rm Nov}}(G)$ such that all left (right) translations are feebly continuous, then $(G,\cdot ,\tau )$ is a topological group. This extends several results in literature.
LA - eng
KW - developability number; feebly continuous; nearly continuous; Novak number; paratopological group; semitopological group; topological group; developability number; feebly continuous; nearly continuous; Novak number; paratopological group; semitopological group; topological group
UR - http://eudml.org/doc/37996
ER -
References
top- Andrijevi'c, D., Semi-preopen sets, Mat. Ves. 38 (1986), 24-32. (1986)
- Arhangel'skii, A. V., Mappings and spaces, Russ. Math. Surv. 21 (1966), 115-162. (1966) MR0227950
- Arhangel'skii, A. V., Reznichenko, E. A., 10.1016/j.topol.2003.08.035, Topology Appl. 151 (2005), 107-119. (2005) Zbl1077.54023MR2139745DOI10.1016/j.topol.2003.08.035
- Banakh, T., Ravsky, O., Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and Their Applications. Proc. Third International Algebraic Conference, Kiev, Ukraine, July 2-8, 2001 Instytut Matematyky NAN Kiev (2002), 140-153. (2002) Zbl1098.22004MR2210489
- Banakh, T., Ravsky, S., On subgroups of saturated or totally bounded paratopological groups, Algebra Discrete Math. (2003), 1-20. (2003) Zbl1061.22003MR2070399
- Bella, A., Some remarks on the Novak number, General topology and its relations to modern analysis and algebra VI (Prague, 1986) Heldermann Berlin (1988), 43-48. (1988) Zbl0634.54004MR0952589
- Bohn, E., Lee, J., 10.2307/2313342, Am. Math. Mon. 72 (1965), 996-998. (1965) Zbl0134.03601MR0190259DOI10.2307/2313342
- Bourbaki, N., Elements of Mathematics, General Topology, Chapters 1-4, Springer Berlin (1989). (1989) Zbl0683.54003MR0979294
- Bouziad, A., 10.1016/0166-8641(93)90074-N, Topology Appl. 50 (1993), 73-80. (1993) MR1217698DOI10.1016/0166-8641(93)90074-N
- Bouziad, A., 10.1016/0166-8641(95)00039-9, Topology Appl. 71 (1996), 119-124. (1996) Zbl0855.22006MR1399551DOI10.1016/0166-8641(95)00039-9
- Cao, J., Greenwood, S., 10.4995/agt.2006.1928, Appl. Gen. Topol. 7 (2006), 253-264. (2006) Zbl1114.54021MR2295174DOI10.4995/agt.2006.1928
- Engelking, R., General Topology. Revised and completed edition, Heldermann-Verlag Berlin (1989). (1989) MR1039321
- Ferri, S., Hernández, S., Wu, T. S., 10.1016/j.topol.2005.04.007, Topology Appl. 153 (2006), 1451-1457. (2006) MR2211210DOI10.1016/j.topol.2005.04.007
- Frolík, Z., Remarks concerning the invariance of Baire spaces under mappings, Czechoslovak Math. J. 11 (1961), 381-385. (1961) MR0133098
- Gentry, K. R., Hoyle, H. B., Somewhat continuous functions, Czechoslovak Math. J. 21 (1971), 5-12. (1971) Zbl0222.54010MR0278269
- Guran, I., Cardinal invariants of paratopological grups, 2nd International Algebraic Conference in Ukraine Vinnytsia (1999). (1999)
- J. L. Kelley, I. Namioka, W. F. Donoghue jun., K. R. Lucas, B. J. Pettis, T. E. Poulsen, G. B. Price, W. Robertson, W. R. Scott, K. T. Smith, Linear Topological Spaces, D. Van Nostarand Company, Inc. Princeton (1963). (1963) MR0166578
- Kempisty, S., 10.4064/fm-19-1-184-197, Fundam. Math. 19 (1932), 184-197 French. (1932) Zbl0005.19802DOI10.4064/fm-19-1-184-197
- Kenderov, P. S., Kortezov, I. S., Moors, W. B., 10.1016/S0166-8641(99)00152-2, Topology Appl. 109 (2001), 157-165. (2001) Zbl0976.22003MR1806330DOI10.1016/S0166-8641(99)00152-2
- Lau, A. T.-M., Loy, R. J., 10.1016/j.jfa.2005.04.006, J. Funct. Anal. 225 (2005), 263-300. (2005) Zbl1098.46035MR2152500DOI10.1016/j.jfa.2005.04.006
- Liu, C., A note on paratopological group, Commentat. Math. Univ. Carol. 47 (2006), 633-640. (2006) MR2337418
- Mercourakis, S., Negrepontis, S., Banach Spaces and Topology. II. Recent Progress in General Topology (Prague, 1991), North-Holland Amsterdam (1992), 493-536. (1992) MR1229137
- Montgomery, D., 10.1090/S0002-9904-1936-06456-6, Bull. Am. Math. Soc. 42 (1936), 879-882. (1936) Zbl0015.39403MR1563458DOI10.1090/S0002-9904-1936-06456-6
- Neubrunn, T., A generalized continuity and product spaces, Math. Slovaca 26 (1976), 97-99. (1976) Zbl0318.54008MR0436064
- Neubrunn, T., 10.2307/44151947, Real Anal. Exch. 14 (1989), 259-306. (1989) Zbl0679.26003MR0995972DOI10.2307/44151947
- Piotrowski, Z., Quasi-continuity and product spaces, Proc. Int. Conf. on Geometric Topology, Warszawa 1978 PWN Warsaw (1980), 349-352. (1980) Zbl0481.54007MR0656769
- Piotrowski, Z., 10.2307/44151750, Real Anal. Exch. 11 (1985-86), 293-322. (1985) Zbl0606.54009MR0844254DOI10.2307/44151750
- Piotrowski, Z., 10.2307/44152002, Real Anal. Exch. 15 (1990), 248-258. (1990) Zbl0702.54009MR1042540DOI10.2307/44152002
- Piotrowski, Z., Separate and joint continuity in Baire groups, Tatra Mt. Math. Publ. 14 (1998), 109-116. (1998) Zbl0938.22001MR1651201
- Pták, V., 10.24033/bsmf.1498, Bull. Soc. Math. Fr. 86 (1958), 41-74. (1958) MR0105606DOI10.24033/bsmf.1498
- Ravsky, O., Paratopological groups. II, Math. Stud. 17 (2002), 93-101. (2002) Zbl1018.22001MR1932275
- Rothmann, D. D., 10.2307/2319315, Am. Math. Mon. 81 (1974), 1018-1019. (1974) Zbl0292.26001MR0350705DOI10.2307/2319315
- Ruppert, W., Compact Semitopological Semigroups: An Intrinsic Theory. Lecture Notes in Mathematics Vol. 1079, Springer (1984). (1984) MR0762985
- Solecki, S., Srivastava, S. M., 10.1016/S0166-8641(96)00119-8, Topology Appl. 77 (1997), 65-75. (1997) Zbl0882.22001MR1443429DOI10.1016/S0166-8641(96)00119-8
- Talagrand, M., 10.1007/BF01456180, Math. Ann. 270 (1985), 159-164 French. (1985) Zbl0582.54008MR0771977DOI10.1007/BF01456180
- Tkachenko, M., Paratopological groups versus topological groups, Lecture at Advances in Set-Theoretic Topology. Conference in Honour of Tsugunori Nogura on his 60th Birthday, Erice, June 2008.
- Zelazko, W., A theorem on division algebras, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 373-375. (1960) Zbl0095.31303MR0125901
- Zelazko, W., A theorem on division algebras, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 373-375. (1960) Zbl0095.31303MR0125901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.