Displaying similar documents to “A semifilter approach to selection principles II: τ * -covers”

On meager function spaces, network character and meager convergence in topological spaces

Taras O. Banakh, Volodymyr Mykhaylyuk, Lubomyr Zdomsky (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a non-isolated point x of a topological space X let nw χ ( x ) be the smallest cardinality of a family 𝒩 of infinite subsets of X such that each neighborhood O ( x ) X of x contains a set N 𝒩 . We prove that (a) each infinite compact Hausdorff space X contains a non-isolated point x with nw χ ( x ) = 0 ; (b) for each point x X with nw χ ( x ) = 0 there is an injective sequence ( x n ) n ω in X that -converges to x for some meager filter on ω ; (c) if a functionally Hausdorff space X contains an -convergent injective sequence for some...

Some observations on filters with properties defined by open covers

Rodrigo Hernández-Gutiérrez, Paul J. Szeptycki (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the relation between the Hurewicz and Menger properties of filters considered topologically as subspaces of 𝒫 ( ω ) with the Cantor set topology.

The point of continuity property, neighbourhood assignments and filter convergences

Ahmed Bouziad (2012)

Fundamenta Mathematicae

Similarity:

We show that for some large classes of topological spaces X and any metric space (Z,d), the point of continuity property of any function f: X → (Z,d) is equivalent to the following condition: (*) For every ε > 0, there is a neighbourhood assignment ( V x ) x X of X such that d(f(x),f(y)) < ε whenever ( x , y ) V y × V x . We also give various descriptions of the filters ℱ on the integers ℕ for which (*) is satisfied by the ℱ-limit of any sequence of continuous functions from a topological space into a metric...

Guessing clubs in the generalized club filter

Bernhard König, Paul Larson, Yasuo Yoshinobu (2007)

Fundamenta Mathematicae

Similarity:

We present principles for guessing clubs in the generalized club filter on κ λ . These principles are shown to be weaker than classical diamond principles but often serve as sufficient substitutes. One application is a new construction of a λ⁺-Suslin-tree using assumptions different from previous constructions. The other application partly solves open problems regarding the cofinality of reflection points for stationary subsets of [ λ ] .

Products of topological spaces and families of filters

Paolo Lipparini (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that, under suitably general formulations, covering properties, accumulation properties and filter convergence are all equivalent notions. This general correspondence is exemplified in the study of products. We prove that a product is Lindelöf if and only if all subproducts by ω 1 factors are Lindelöf. Parallel results are obtained for final ω n -compactness, [ λ , μ ] -compactness, the Menger and the Rothberger properties.