Dyadic diaphony of digital sequences
- [1] Universtät Linz Institut für Finanzmathematik Altenbergerstrasse 69 A-4040 Linz, Austria
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 2, page 501-521
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topPillichshammer, Friedrich. "Dyadic diaphony of digital sequences." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 501-521. <http://eudml.org/doc/249945>.
@article{Pillichshammer2007,
abstract = {The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital $(0,s)$-sequences over $\{\mathbb\{Z\}\}_2$, $s=1,2$. These formulae show that for fixed $s \in \lbrace 1,2\rbrace $, the dyadic diaphony has the same values for any digital $(0,s)$-sequence. For $s=1$, it follows that the dyadic diaphony and the diaphony of special digital $(0,1)$-sequences are up to a constant the same. We give the exact asymptotic order of the dyadic diaphony of digital $(0,s)$-sequences and show that for $s=1$ it satisfies a central limit theorem.},
affiliation = {Universtät Linz Institut für Finanzmathematik Altenbergerstrasse 69 A-4040 Linz, Austria},
author = {Pillichshammer, Friedrich},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {discrepancy of sequences; dyadic diaphony},
language = {eng},
number = {2},
pages = {501-521},
publisher = {Université Bordeaux 1},
title = {Dyadic diaphony of digital sequences},
url = {http://eudml.org/doc/249945},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Pillichshammer, Friedrich
TI - Dyadic diaphony of digital sequences
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 501
EP - 521
AB - The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital $(0,s)$-sequences over ${\mathbb{Z}}_2$, $s=1,2$. These formulae show that for fixed $s \in \lbrace 1,2\rbrace $, the dyadic diaphony has the same values for any digital $(0,s)$-sequence. For $s=1$, it follows that the dyadic diaphony and the diaphony of special digital $(0,1)$-sequences are up to a constant the same. We give the exact asymptotic order of the dyadic diaphony of digital $(0,s)$-sequences and show that for $s=1$ it satisfies a central limit theorem.
LA - eng
KW - discrepancy of sequences; dyadic diaphony
UR - http://eudml.org/doc/249945
ER -
References
top- H. Chaix and H. Faure, Discrépance et diaphonie en dimension un. Acta Arith. 63 (1993), 103–141. Zbl0772.11022MR1206080
- J. Dick and F. Pillichshammer, Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complexity 21 (2005), 149–195. Zbl1085.41021MR2123222
- J. Dick and F. Pillichshammer, Dyadic diaphony of digital nets over . Monatsh. Math. 145 (2005), 285–299. Zbl1130.11042MR2162347
- J. Dick and F. Pillichshammer, On the mean square weighted -discrepancy of randomized digital -nets over . Acta Arith. 117 (2005), 371–403. Zbl1080.11058MR2140164
- J. Dick and F. Pillichshammer, Diaphony, discrepancy, spectral test and worst-case error. Math. Comput. Simulation 70 (2005), 159–171. Zbl1193.65003MR2176902
- M. Drmota, G. Larcher and F. Pillichshammer, Precise distribution properties of the van der Corput sequence and related sequences. Manuscripta Math. 118 (2005), 11–41. Zbl1088.11060MR2171290
- M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997. Zbl0877.11043MR1470456
- H. Faure, Discrepancy and diaphony of digital -sequences in prime base. Acta Arith. 117 (2004), 125–148. Zbl1080.11054MR2139596
- H. Faure, Irregularites of distribution of digital -sequences in prime base. Integers 5 (2005), A7, 12 pages. Zbl1084.11041MR2191753
- V.S. Grozdanov, On the diaphony of one class of one-dimensional sequences. Internat. J. Math. Math. Sci. 19 (1996), 115–124. Zbl0841.11038MR1361985
- P. Hellekalek and H. Leeb, Dyadic diaphony. Acta Arith. 80 (1997), 187–196. Zbl0868.11034MR1450924
- L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. John Wiley, New York, 1974. Zbl0281.10001MR419394
- G. Larcher, H. Niederreiter and W.Ch. Schmid, Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration. Monatsh. Math. 121 (1996), 231–253. Zbl0876.11042MR1383533
- G. Larcher and F. Pillichshammer, Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arith. 106 (2003), 379–408. Zbl1054.11039MR1957912
- H. Niederreiter, Point sets and sequences with small discrepancy. Monatsh. Math. 104 (1987), 273–337. Zbl0626.10045MR918037
- H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. No. 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992. Zbl0761.65002MR1172997
- F. Pillichshammer, Digital sequences with best possible order of –discrepancy. Mathematika 53 (2006), 149–160. Zbl1121.11049MR2304057
- P.D. Proinov and V.S. Grozdanov, On the diaphony of the van der Corput-Halton sequence. J. Number Theory 30 (1988), 94–104. Zbl0654.10050MR960236
- P. Zinterhof, Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II 185 (1976), 121–132. Zbl0356.65007MR501760
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.