Dyadic diaphony of digital sequences

Friedrich Pillichshammer[1]

  • [1] Universtät Linz Institut für Finanzmathematik Altenbergerstrasse 69 A-4040 Linz, Austria

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 2, page 501-521
  • ISSN: 1246-7405

Abstract

top
The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital ( 0 , s ) -sequences over 2 , s = 1 , 2 . These formulae show that for fixed s { 1 , 2 } , the dyadic diaphony has the same values for any digital ( 0 , s ) -sequence. For s = 1 , it follows that the dyadic diaphony and the diaphony of special digital ( 0 , 1 ) -sequences are up to a constant the same. We give the exact asymptotic order of the dyadic diaphony of digital ( 0 , s ) -sequences and show that for s = 1 it satisfies a central limit theorem.

How to cite

top

Pillichshammer, Friedrich. "Dyadic diaphony of digital sequences." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 501-521. <http://eudml.org/doc/249945>.

@article{Pillichshammer2007,
abstract = {The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital $(0,s)$-sequences over $\{\mathbb\{Z\}\}_2$, $s=1,2$. These formulae show that for fixed $s \in \lbrace 1,2\rbrace $, the dyadic diaphony has the same values for any digital $(0,s)$-sequence. For $s=1$, it follows that the dyadic diaphony and the diaphony of special digital $(0,1)$-sequences are up to a constant the same. We give the exact asymptotic order of the dyadic diaphony of digital $(0,s)$-sequences and show that for $s=1$ it satisfies a central limit theorem.},
affiliation = {Universtät Linz Institut für Finanzmathematik Altenbergerstrasse 69 A-4040 Linz, Austria},
author = {Pillichshammer, Friedrich},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {discrepancy of sequences; dyadic diaphony},
language = {eng},
number = {2},
pages = {501-521},
publisher = {Université Bordeaux 1},
title = {Dyadic diaphony of digital sequences},
url = {http://eudml.org/doc/249945},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Pillichshammer, Friedrich
TI - Dyadic diaphony of digital sequences
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 501
EP - 521
AB - The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital $(0,s)$-sequences over ${\mathbb{Z}}_2$, $s=1,2$. These formulae show that for fixed $s \in \lbrace 1,2\rbrace $, the dyadic diaphony has the same values for any digital $(0,s)$-sequence. For $s=1$, it follows that the dyadic diaphony and the diaphony of special digital $(0,1)$-sequences are up to a constant the same. We give the exact asymptotic order of the dyadic diaphony of digital $(0,s)$-sequences and show that for $s=1$ it satisfies a central limit theorem.
LA - eng
KW - discrepancy of sequences; dyadic diaphony
UR - http://eudml.org/doc/249945
ER -

References

top
  1. H. Chaix and H. Faure, Discrépance et diaphonie en dimension un. Acta Arith. 63 (1993), 103–141. Zbl0772.11022MR1206080
  2. J. Dick and F. Pillichshammer, Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complexity 21 (2005), 149–195. Zbl1085.41021MR2123222
  3. J. Dick and F. Pillichshammer, Dyadic diaphony of digital nets over 2 . Monatsh. Math. 145 (2005), 285–299. Zbl1130.11042MR2162347
  4. J. Dick and F. Pillichshammer, On the mean square weighted 2 -discrepancy of randomized digital ( t , m , s ) -nets over 2 . Acta Arith. 117 (2005), 371–403. Zbl1080.11058MR2140164
  5. J. Dick and F. Pillichshammer, Diaphony, discrepancy, spectral test and worst-case error. Math. Comput. Simulation 70 (2005), 159–171. Zbl1193.65003MR2176902
  6. M. Drmota, G. Larcher and F. Pillichshammer, Precise distribution properties of the van der Corput sequence and related sequences. Manuscripta Math. 118 (2005), 11–41. Zbl1088.11060MR2171290
  7. M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997. Zbl0877.11043MR1470456
  8. H. Faure, Discrepancy and diaphony of digital ( 0 , 1 ) -sequences in prime base. Acta Arith. 117 (2004), 125–148. Zbl1080.11054MR2139596
  9. H. Faure, Irregularites of distribution of digital ( 0 , 1 ) -sequences in prime base. Integers 5 (2005), A7, 12 pages. Zbl1084.11041MR2191753
  10. V.S. Grozdanov, On the diaphony of one class of one-dimensional sequences. Internat. J. Math. Math. Sci. 19 (1996), 115–124. Zbl0841.11038MR1361985
  11. P. Hellekalek and H. Leeb, Dyadic diaphony. Acta Arith. 80 (1997), 187–196. Zbl0868.11034MR1450924
  12. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. John Wiley, New York, 1974. Zbl0281.10001MR419394
  13. G. Larcher, H. Niederreiter and W.Ch. Schmid, Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration. Monatsh. Math. 121 (1996), 231–253. Zbl0876.11042MR1383533
  14. G. Larcher and F. Pillichshammer, Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arith. 106 (2003), 379–408. Zbl1054.11039MR1957912
  15. H. Niederreiter, Point sets and sequences with small discrepancy. Monatsh. Math. 104 (1987), 273–337. Zbl0626.10045MR918037
  16. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. No. 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992. Zbl0761.65002MR1172997
  17. F. Pillichshammer, Digital sequences with best possible order of L 2 –discrepancy. Mathematika 53 (2006), 149–160. Zbl1121.11049MR2304057
  18. P.D. Proinov and V.S. Grozdanov, On the diaphony of the van der Corput-Halton sequence. J. Number Theory 30 (1988), 94–104. Zbl0654.10050MR960236
  19. P. Zinterhof, Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II 185 (1976), 121–132. Zbl0356.65007MR501760

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.