# Model problems from nonlinear elasticity: partial regularity results

Menita Carozza; Antonia Passarelli di Napoli

ESAIM: Control, Optimisation and Calculus of Variations (2007)

- Volume: 13, Issue: 1, page 120-134
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topCarozza, Menita, and Passarelli di Napoli, Antonia. "Model problems from nonlinear elasticity: partial regularity results." ESAIM: Control, Optimisation and Calculus of Variations 13.1 (2007): 120-134. <http://eudml.org/doc/250002>.

@article{Carozza2007,

abstract = {
In this paper we prove that every weak
and strong local
minimizer $u\in\{W^\{1,2\}(\Omega,\mathbb\{R\}^3)\}$ of the functional
$I(u)=\int_\Omega|Du|^2+f(\{\rm Adj\}Du)+g(\{\rm det\}Du),$
where $ u:\Omega\subset\mathbb\{R\}^3\to \mathbb\{R\}^3$,
f grows like $|\{\rm Adj\}Du|^p$, g grows
like $|\{\rm det\}Du|^q$ and
1<q<p<2, is $C^\{1,\alpha\}$ on an open
subset $\Omega_0$ of Ω such that
$\{\it meas\}(\Omega\setminus \Omega_0)=0$. Such
functionals naturally arise from nonlinear elasticity problems. The key
point in order to obtain the partial regularity result is to
establish an energy estimate of Caccioppoli type, which is based on
an appropriate choice of the test functions. The limit case
$p=q\le 2$
is also treated for weak local minimizers.
},

author = {Carozza, Menita, Passarelli di Napoli, Antonia},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Nonlinear
elasticity; partial regularity; polyconvexity.; Nonlinear elasticity; polyconvexity},

language = {eng},

month = {2},

number = {1},

pages = {120-134},

publisher = {EDP Sciences},

title = {Model problems from nonlinear elasticity: partial regularity results},

url = {http://eudml.org/doc/250002},

volume = {13},

year = {2007},

}

TY - JOUR

AU - Carozza, Menita

AU - Passarelli di Napoli, Antonia

TI - Model problems from nonlinear elasticity: partial regularity results

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2007/2//

PB - EDP Sciences

VL - 13

IS - 1

SP - 120

EP - 134

AB -
In this paper we prove that every weak
and strong local
minimizer $u\in{W^{1,2}(\Omega,\mathbb{R}^3)}$ of the functional
$I(u)=\int_\Omega|Du|^2+f({\rm Adj}Du)+g({\rm det}Du),$
where $ u:\Omega\subset\mathbb{R}^3\to \mathbb{R}^3$,
f grows like $|{\rm Adj}Du|^p$, g grows
like $|{\rm det}Du|^q$ and
1<q<p<2, is $C^{1,\alpha}$ on an open
subset $\Omega_0$ of Ω such that
${\it meas}(\Omega\setminus \Omega_0)=0$. Such
functionals naturally arise from nonlinear elasticity problems. The key
point in order to obtain the partial regularity result is to
establish an energy estimate of Caccioppoli type, which is based on
an appropriate choice of the test functions. The limit case
$p=q\le 2$
is also treated for weak local minimizers.

LA - eng

KW - Nonlinear
elasticity; partial regularity; polyconvexity.; Nonlinear elasticity; polyconvexity

UR - http://eudml.org/doc/250002

ER -

## References

top- E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Rational Mech. Anal.99 (1987) 261–281. Zbl0627.49007
- E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case $1<p<2$. J. Math. Anal. Appl.140 (1989) 115–135. Zbl0686.49004
- J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal.63 (1977) 337–403. Zbl0368.73040
- J.M. Ball, Some open problem in elasticity, in Geometry, Mechanics and dynamics, Springer, New York (2002) 3–59. Zbl1054.74008
- M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Annali Mat. Pura Appl.175 (1998) 141–164. Zbl0960.49025
- M. Carozza and A. Passarelli di Napoli, A regularity theorem for minimizers of quasiconvex integrals the case $1<p<2$. Proc. Roy. Soc. Edinburgh126A (1996) 1181–1199. Zbl0955.49021
- M. Carozza and A. Passarelli di Napoli, Partial regularity of local minimizers of quasiconvex integrals with sub-quadratic growth. Proc. Roy. Soc Edinburgh133A (2003) 1249–1262. Zbl1059.49033
- B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci.78, Springer Verlag (1989). Zbl0703.49001
- L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal.95 (1986) 227–252. Zbl0627.49006
- N. Fusco and J. Hutchinson, Partial regularity in problems motivated by nonlinear elasticity. SIAM J. Math.22 (1991) 1516–1551. Zbl0744.35014
- N. Fusco and J. Hutchinson, Partial regularity and everywhere continuity for a model problem from nonlinear elasticity. J. Australian Math. Soc.57 (1994) 149–157. Zbl0864.35032
- M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud.105 Princeton Univ. Press (1983). Zbl0516.49003
- M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. H. Poincaré, Analyse non linéaire3 (1986) 185–208. Zbl0594.49004
- E. Giusti, Metodi diretti in calcolo delle variazioni. U.M.I. (1994).
- J. Kristensen and A. Taheri, Partial regularity of strong local minimizers in the multidimensional calculus of variations. Arch. Rational Mech. Anal.170 (2003) 63–89. Zbl1030.49040
- A. Passarelli di Napoli, A regularity result for a class of polyconvex functionals. Ricerche di MatematicaXLVIII (1999) 379–393. Zbl0947.35052

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.