Page 1

Displaying 1 – 9 of 9

Showing per page

General method of regularization. I: Functionals defined on BD space

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. In part II, we will show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we will prove the existence theorem for the limit analysis problem.

General method of regularization. II: Relaxation proposed by suquet

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. We show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we prove an existence theorem for the limit analysis problem.

General method of regularization. III: The unilateral contact problem

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material with the Signorini constraints on the boundary) is the weak* lower semicontinuous regularization of the plastic energy. We consider an elastic-plastic solid endowed with the von Mises (or Tresca) yield condition. Moreover, we show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. We deduce that...

Model problems from nonlinear elasticity: partial regularity results

Menita Carozza, Antonia Passarelli di Napoli (2007)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove that every weak and strong local minimizer u W 1 , 2 ( Ω , 3 ) of the functional I ( u ) = Ω | D u | 2 + f ( Adj D u ) + g ( det D u ) , where u : Ω 3 3 , f grows like | Adj D u | p , g grows like | det D u | q and 1<q<p<2, is C 1 , α on an open subset Ω 0 of Ω such that 𝑚𝑒𝑎𝑠 ( Ω Ω 0 ) = 0 . Such functionals naturally arise from nonlinear elasticity problems. The key point in order to obtain the partial regularity result is to establish an energy estimate of Caccioppoli type, which is based on an appropriate choice of the test functions. The limit case p = q 2 is also treated for weak local minimizers. ...

Regularity of solutions in plasticity. I: Continuum

Jarosław L. Bojarski (2003)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of solutions in Hencky plasticity. We consider a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space L D ( Ω ) u L ¹ ( Ω , ) | u + ( u ) T L ¹ ( Ω , n × n ) if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.

Regularity of solutions in plasticity. II: Plates

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. We consider a plate made of a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space W 2 , 1 ( Ω ) if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.

Currently displaying 1 – 9 of 9

Page 1