A regularity result for a convex functional and bounds for the singular set

Bruno De Maria

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 16, Issue: 4, page 1002-1017
  • ISSN: 1292-8119

Abstract

top
In this paper we prove a regularity result for local minimizers of functionals of the Calculus of Variations of the type Ω f ( x , D u ) d x where Ω is a bounded open set in n , u∈ W loc 1 , p (Ω; N ), p> 1, n≥ 2 and N≥ 1. We use the technique of difference quotient without the usual assumption on the growth of the second derivatives of the function f. We apply this result to give a bound on the Hausdorff dimension of the singular set of minimizers.

How to cite

top

De Maria, Bruno. "A regularity result for a convex functional and bounds for the singular set." ESAIM: Control, Optimisation and Calculus of Variations 16.4 (2010): 1002-1017. <http://eudml.org/doc/250746>.

@article{DeMaria2010,
abstract = { In this paper we prove a regularity result for local minimizers of functionals of the Calculus of Variations of the type$$ \int\_\{\Omega\}f(x, Du)\ \{\rm d\}x $$where Ω is a bounded open set in $\mathbb\{R\}^\{n\}$, u∈$W^\{1,p\}_\{\rm loc\}$(Ω; $\mathbb\{R\}^\{N\}$), p> 1, n≥ 2 and N≥ 1. We use the technique of difference quotient without the usual assumption on the growth of the second derivatives of the function f. We apply this result to give a bound on the Hausdorff dimension of the singular set of minimizers. },
author = {De Maria, Bruno},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Partial regularity; singular sets; fractional differentiability; variational integrals; partial regularity},
language = {eng},
month = {10},
number = {4},
pages = {1002-1017},
publisher = {EDP Sciences},
title = {A regularity result for a convex functional and bounds for the singular set},
url = {http://eudml.org/doc/250746},
volume = {16},
year = {2010},
}

TY - JOUR
AU - De Maria, Bruno
TI - A regularity result for a convex functional and bounds for the singular set
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/10//
PB - EDP Sciences
VL - 16
IS - 4
SP - 1002
EP - 1017
AB - In this paper we prove a regularity result for local minimizers of functionals of the Calculus of Variations of the type$$ \int_{\Omega}f(x, Du)\ {\rm d}x $$where Ω is a bounded open set in $\mathbb{R}^{n}$, u∈$W^{1,p}_{\rm loc}$(Ω; $\mathbb{R}^{N}$), p> 1, n≥ 2 and N≥ 1. We use the technique of difference quotient without the usual assumption on the growth of the second derivatives of the function f. We apply this result to give a bound on the Hausdorff dimension of the singular set of minimizers.
LA - eng
KW - Partial regularity; singular sets; fractional differentiability; variational integrals; partial regularity
UR - http://eudml.org/doc/250746
ER -

References

top
  1. E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal.99 (1987) 261–281.  
  2. E. Acerbi and N. Fusco, Regularity of minimizers of non-quadratic functionals: the case 1 < p < 2 . J. Math. Anal. Appl.140 (1989) 115–135.  
  3. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).  
  4. M. Carozza and A. Passarelli di Napoli, A regularity theorem for minimizers of quasiconvex integrals: the case 1 < p < 2 . Proc. R. Math. Soc. Edinb. A126 (1996) 1181–1199.  
  5. M. Carozza and A. Passarelli di Napoli, Model problems from nonlinear elasticity: partial regularity results. ESAIM: COCV13 (2007) 120–134.  
  6. M. Carozza, N. Fusco and R. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Annali di matematica pura e applicata (IV)CLXXV (1998) 141–164.  
  7. G. Cupini, N. Fusco and R. Petti, Hölder continuity of local minimizers. J. Math. Anal. Appl.235 (1999) 578–597.  
  8. E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. It.1 (1968) 135–137.  
  9. L. Esposito, F. Leonetti and G. Mingione, Higher integrability for minimizers of integral functionals with ( p , q ) growth. J. Differ. Equ.157 (1999) 414–438.  
  10. L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with ( p , q ) growth. Forum Math.14 (2002) 245–272.  
  11. L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with ( p , q ) growth. J. Differ. Equ.204 (2004) 5–55.  
  12. L.C. Evans, Quasiconvexity and partial regularity in the Calculus of Variations. Arch. Ration. Mech. Anal.95 (1984) 227–252.  
  13. L.C. Evans and R.F. Gariepy, Blow-up, compactness and partial regularity in the Calculus of Variations. Indiana Univ. Math. J.36 (1987) 361–371.  
  14. I. Fonseca and N. Fusco, Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)3 (1997) 463–499.  
  15. I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity. ESAIM: COCV7 (2002) 69–95.  
  16. M. Giaquinta and G. Modica, Remarks on the regularity of minimizers of certain degenerate functionals. Manuscripta Math.47 (1986) 55–99.  
  17. E. Giusti, Direct methods in the calculus of variations. World Scientific, River Edge, USA (2003).  
  18. O. John, J. Malý and J. Stará, Nowhere continuous solutions to elliptic systems. Comm. Math. Univ. Carolin.30 (1989) 33–43.  
  19. J. Kristensen and G. Mingione, Non-differentiable functionals and singular sets of minima. C. R. Acad. Sci. Paris Ser. I Math.340 (2005) 93–98.  
  20. J. Kristensen and G. Mingione, The singular set of minima of integral functionals. Arch. Ration. Mech. Anal.180 (2006) 331–398.  
  21. G. Mingione, The singular set of solutions to non differentiable elliptic systems. Arch. Ration. Mech. Anal.166 (2003) 287–301.  
  22. G. Mingione, Bounds for the singular set of solutions to non linear elliptic system. Calc. Var.18 (2003) 373–400.  
  23. G. Mingione, Regularity of minima: an invitation to the dark side of calculus of variations. Appl. Math.51 (2006) 355–426.  
  24. J. Nečas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, in Theory of nonlinear operators, Proc. Fourth Internat. Summer School, Acad. Sci., Berlin (1975) 197–206.  
  25. A. Passarelli di Napoli, A regularity result for a class of polyconvex functionals. Ric. di Matem.XLVIII (1994) 379–393.  
  26. V. Šverák and X. Yan, A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var.10 (2000) 213–221.  
  27. V. Šverák and X. Yan, Non Lipschitz minimizers of smooth strongly convex variational integrals. Proc. Nat. Acad. Sc. USA99 (2002) 15269–15276.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.