Partial regularity for anisotropic functionals of higher order
Menita Carozza; Antonia Passarelli di Napoli
ESAIM: Control, Optimisation and Calculus of Variations (2007)
- Volume: 13, Issue: 4, page 692-706
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topCarozza, Menita, and Passarelli di Napoli, Antonia. "Partial regularity for anisotropic functionals of higher order." ESAIM: Control, Optimisation and Calculus of Variations 13.4 (2007): 692-706. <http://eudml.org/doc/250008>.
@article{Carozza2007,
abstract = {
We prove a $C^\{k,\alpha\}$
partial regularity result for local minimizers of variational
integrals of the type $I(u)=\int_\Omega f(D^\{k\}u(x))\{\rm d\}x$, assuming
that the integrand f satisfies (p,q) growth conditions.
},
author = {Carozza, Menita, Passarelli di Napoli, Antonia},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Partial regularity; non standard growth; higher order derivatives; nonstandard growth},
language = {eng},
month = {7},
number = {4},
pages = {692-706},
publisher = {EDP Sciences},
title = {Partial regularity for anisotropic functionals of higher order},
url = {http://eudml.org/doc/250008},
volume = {13},
year = {2007},
}
TY - JOUR
AU - Carozza, Menita
AU - Passarelli di Napoli, Antonia
TI - Partial regularity for anisotropic functionals of higher order
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/7//
PB - EDP Sciences
VL - 13
IS - 4
SP - 692
EP - 706
AB -
We prove a $C^{k,\alpha}$
partial regularity result for local minimizers of variational
integrals of the type $I(u)=\int_\Omega f(D^{k}u(x)){\rm d}x$, assuming
that the integrand f satisfies (p,q) growth conditions.
LA - eng
KW - Partial regularity; non standard growth; higher order derivatives; nonstandard growth
UR - http://eudml.org/doc/250008
ER -
References
top- E. Acerbi and N. Fusco, Partial regularity under anisotropic growth conditions. J. Diff. Eq.107 (1994) 46–67.
- M. Bildhauer, Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lect. Notes Math.1818, Springer-Verlag, Berlin (2003).
- M. Bildhauer and M. Fuchs, Higher order variational problems with non-standard growth condition in dimension two: plates with obstacles. Ann. Acad. Sci. Fennicae Math.26 (2001) 509–518.
- M. Carriero, A. Leaci and F. Tomarelli, Strong minimizers of Blake & Zisserman functional. Ann. Scuola Norm. Sup. Pisa Cl. Sci.15 (1997) 257–285.
- R. Choksi, R.V. Kohn and F. Otto, Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math. Phys.201 (1999) 61–79.
- B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci.78, Springer Verlag (1989).
- G. Dal Maso, I. Fonseca, G. Leoni and M. Morini, Higher order quasiconvexity reduces to quasiconvexity Arch. Rational Mech. Anal.171 (2004) 55–81.
- L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with growth. Forum Math.14 (2002) 245–272.
- L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with growth. J. Diff. Eq.204 (2004) 5–55.
- I. Fonseca and J. Malý, Relaxation of multiple integrals in Sobolev spaces below the growth exponent for the energy density. Ann. Inst. H. Poincaré - Anal. Non Linéaire14 (1997) 309–338.
- I. Fonseca and J. Malý, From Jacobian to Hessian: distributional form and relaxation. Riv. Mat. Univ. Parma(7) (2005), Proc. Conf. “Trends in the Calculus of Variations”, E. Acerbi and G. Mingione Eds., 45–74.
- M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud.105 (1983), Princeton Univ. Press.
- M. Giaquinta, Growth conditions and regularity, a counterexample. Manu. Math.59 (1987) 245–248.
- E. Giusti, Metodi diretti in calcolo delle variazioni. U.M.I. (1994).
- M. Guidorzi, A remark on partial regularity of minimizers of quasiconvex integrals of higher order. Rend. Ist. Mat di TriesteXXXII (2000) 1–24.
- M. Kronz, Partial regularity results for minimizers of quasiconvex functionals of higher order. Ann. Inst. H. Poincaré - Anal. Non Linéaire19 (2002) 81–112.
- P. Marcellini, Un example de solution discontinue d'un probéme variationel dans le cas scalaire. Preprint Ist. U. Dini, Firenze (1987–1988).
- P. Marcellini, Regularity of minimizers of integrals of the calculus of Variations with non-standard growth conditions. Arch. Rat. Mech. Anal.105 (1989) 267–284.
- P. Marcellini, Regularity and existence of solutions of elliptic equations with growth conditions. J. Diff. Eq.90 (1991) 1–30.
- P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Normale Sup. Pisa, Cl. Sci.23 (1996) 1–25.
- S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math.157 (2003) 715–742.
- A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems. Rend. Ist. Mat di Trieste (1997) 13–31.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.