Local minimizers with vortex filaments for a Gross-Pitaevsky functional
ESAIM: Control, Optimisation and Calculus of Variations (2007)
- Volume: 13, Issue: 1, page 35-71
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topJerrard, Robert L.. "Local minimizers with vortex filaments for a Gross-Pitaevsky functional." ESAIM: Control, Optimisation and Calculus of Variations 13.1 (2007): 35-71. <http://eudml.org/doc/250012>.
@article{Jerrard2007,
abstract = {
This paper gives a rigorous derivation
of a functional proposed by Aftalion and Rivière [Phys. Rev. A64 (2001) 043611]
to characterize the energy of vortex filaments
in a rotationally forced Bose-Einstein condensate. This
functional is derived as a Γ-limit
of scaled versions of the Gross-Pitaevsky
functional for the wave function of such a condensate. In most situations,
the vortex filament energy functional is either unbounded below
or has only trivial minimizers, but
we establish the existence of large numbers of nontrivial
local minimizers and we prove that, given any such
local minimizer, the Gross-Pitaevsky functional
has a local minimizer that is nearby (in a suitable sense) whenever a scaling
parameter is sufficiently small.
},
author = {Jerrard, Robert L.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Gross-Pitaevsky; vortices; Gamma-convergence; Thomas-Fermi limit; rectifiable currents.; rectifiable currents; wave function; critical point; energy of vortex filaments in a rotationally forced Bose-Einstein condensate; -limit; Gross-Pitaevsky functional},
language = {eng},
month = {2},
number = {1},
pages = {35-71},
publisher = {EDP Sciences},
title = {Local minimizers with vortex filaments for a Gross-Pitaevsky functional},
url = {http://eudml.org/doc/250012},
volume = {13},
year = {2007},
}
TY - JOUR
AU - Jerrard, Robert L.
TI - Local minimizers with vortex filaments for a Gross-Pitaevsky functional
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/2//
PB - EDP Sciences
VL - 13
IS - 1
SP - 35
EP - 71
AB -
This paper gives a rigorous derivation
of a functional proposed by Aftalion and Rivière [Phys. Rev. A64 (2001) 043611]
to characterize the energy of vortex filaments
in a rotationally forced Bose-Einstein condensate. This
functional is derived as a Γ-limit
of scaled versions of the Gross-Pitaevsky
functional for the wave function of such a condensate. In most situations,
the vortex filament energy functional is either unbounded below
or has only trivial minimizers, but
we establish the existence of large numbers of nontrivial
local minimizers and we prove that, given any such
local minimizer, the Gross-Pitaevsky functional
has a local minimizer that is nearby (in a suitable sense) whenever a scaling
parameter is sufficiently small.
LA - eng
KW - Gross-Pitaevsky; vortices; Gamma-convergence; Thomas-Fermi limit; rectifiable currents.; rectifiable currents; wave function; critical point; energy of vortex filaments in a rotationally forced Bose-Einstein condensate; -limit; Gross-Pitaevsky functional
UR - http://eudml.org/doc/250012
ER -
References
top- A. Aftalion and R.L. Jerrard, On the shape of vortices for a rotating Bose-Einstein condensate. Phys. Rev. A66 (2002) 023611.
- A. Aftalion and R. L. Jerrard, Properties of a single vortex solution in a rotating Bose-Einstein condensate. C. R. Acad. Sci. Paris Ser. I336 (2003) 713–718.
- A. Aftalion and T. Rivière, Vortex energy and vortex bending for a rotating Bose-Einstein condensate. Phys. Rev. A64 (2001) 043611.
- G. Alberti, S. Baldo and G. Orlandi, Functions with prescribed singularities. J. Eur. Math. Soc.5 (2003) 275–311.
- G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type. Indiana Univ. Math J.54 (2005) 1411–1472.
- N. Andre and I. Shafrir, Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. I, II. Arch. Rational Mech. Anal.142 (1998) 45–73, 75–98.
- F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Birkhauser, New-York (1994).
- H. Brezis, J.M. Coron, and E.H. Lieb, Harmonic maps with defects. Comm. Math. Phys.107 (1986) 649–705.
- L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, London (1992).
- H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin (1969).
- M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations. I, II. Springer-Verlag, New York (1998).
- R.L. Jerrard and H.M. Soner, The Jacobian and the Ginzburg-Landau functional. Cal. Var.14 (2002) 151–191.
- R.L. Jerrard, A. Montero, and P. Sternberg, Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions. Comm. Math. Phys.249 (2004) 549–577.
- R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations. Proc. Royal Soc. Edin.111A (1989) 69–84.
- L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math.77 (1999) 1–26.
- A. Montero, P. Sternberg, and W. Ziemer, Local minimizers with vortices to the Ginzburg-Landau system in 3-d. Comm. Pure Appl. Math57 (2004) 99–125.
- C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu and W. Ketterle, Vortex nucleation in a stirred Bose-Einstein condensate. Phys. Rev. Lett.87 (2001) 210402.
- T. Rivière, Line vortices in the -Higgs model. Cont. Opt. Calc. Var.1 (1996) 77–167.
- P. Rosenbuch, V. Bretin, and J. Dalibard, Dynamics of a single vortex line in a Bose-Einstein condensate. Phys. Rev. Lett.89 (2002) 200403.
- E. Sandier and S. Serfaty. A product estimate for Ginzburg-Landau and corollaries. J. Funct. Anal.211 (2004) 219–244.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.