Line vortices in the U(1) Higgs model

Tristan Rivière

ESAIM: Control, Optimisation and Calculus of Variations (1996)

  • Volume: 1, page 77-167
  • ISSN: 1292-8119

How to cite

top

Rivière, Tristan. "Line vortices in the U(1) Higgs model." ESAIM: Control, Optimisation and Calculus of Variations 1 (1996): 77-167. <http://eudml.org/doc/90501>.

@article{Rivière1996,
author = {Rivière, Tristan},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Higgs field; Ginzburg-Landau equations},
language = {eng},
pages = {77-167},
publisher = {EDP Sciences},
title = {Line vortices in the U(1) Higgs model},
url = {http://eudml.org/doc/90501},
volume = {1},
year = {1996},
}

TY - JOUR
AU - Rivière, Tristan
TI - Line vortices in the U(1) Higgs model
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1996
PB - EDP Sciences
VL - 1
SP - 77
EP - 167
LA - eng
KW - Higgs field; Ginzburg-Landau equations
UR - http://eudml.org/doc/90501
ER -

References

top
  1. [1] L. Almeida and F. Bethuel: Méthodes topologiques pour l'équation de Ginzburg-Landau, C.R.A.S, Paris, 320, 935-939, 1995. Zbl0826.35036MR1328714
  2. [2] F. Bethuel, H. Brezis and F. Hélein: Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of variations and PDE1, 123-148, 1993. Zbl0834.35014MR1261720
  3. [3] F. Bethuel, H. Brezis and F. Hélein: Ginzburg-Landau vortices, Birkhaüser, 1994. Zbl0802.35142MR1269538
  4. [4] F. Bethuel and T. Rivière: Vortices for a variational problem related to supraconductivity, Ann. Inst. Henri Poincaré, (analyse non linéaire), 12, 3, 243-303, 1995. Zbl0842.35119MR1340265
  5. [5] R. Bott and L. Tu: Differential forms in Algebraic Topology, Springer, 1986. Zbl0496.55001MR658304
  6. [6] H. Brezis, J.-M Coron and E. Lieb: Harmonic maps with defects, Comm. Math. Phys., 107, 649-705, 1986. Zbl0608.58016MR868739
  7. [7] H. Brezis, F. Merle and T. Rivière: Quantization effects for -&#x2206;u = u(1 - |u|2) in &#x211D;2, to appear in Arch. for rat. Mech. Analysis. Zbl0809.35019
  8. [8] J. Fröhlich and M. Struwe: Variational problems on vector bundles, Commun. Math. Phys., 131, 431-464, 1990. Zbl0714.58012MR1065892
  9. [9] R. Hardt and L. Simon: Seminar on geometric Measure Theory, Birkhaüser, 1986. Zbl0601.49029MR891187
  10. [10] A. Jaffe and C. Taubes: Vortices and Monopoles, Birkhaüser, 1980. Zbl0457.53034MR614447
  11. [11] F.H. Lin: Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. Inst. Henri Poincaré, (analyse nonlinéaire),12, 5, 599-622, 1995. Zbl0845.35052MR1353261
  12. [12] T. Rivière: Lignes de tourbillon dans le modèle abelien de Higgs, C.R.A.S., Paris, 321, 73-76, 1995. Zbl0840.35109MR1340085

Citations in EuDML Documents

top
  1. Amandine Aftalion, Vortex dans les condensats de Bose Einstein
  2. Robert L. Jerrard, Local minimizers with vortex filaments for a Gross-Pitaevsky functional
  3. Stan Alama, Lia Bronsard, J. Alberto Montero, On the Ginzburg–Landau model of a superconducting ball in a uniform field
  4. Tristan Rivière, Asymptotic analysis for the Ginzburg-Landau equations
  5. Tristan Rivière, Ginzburg-Landau vortices : the static model
  6. Didier Smets, Problèmes d’évolution liés à l’énergie de Ginzburg-Landau
  7. Jean Bourgain, Haim Brezis, Petru Mironescu, H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation
  8. F. Bethuel, G. Orlandi, Uniform estimates for the parabolic Ginzburg–Landau equation
  9. Fabrice Bethuel, Giandomenico Orlandi, Didier Smets, Motion of concentration sets in Ginzburg-Landau equations
  10. F. Bethuel, G. Orlandi, Uniform estimates for the parabolic Ginzburg–Landau equation

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.