Line vortices in the U(1) Higgs model
ESAIM: Control, Optimisation and Calculus of Variations (1996)
- Volume: 1, page 77-167
- ISSN: 1292-8119
Access Full Article
topHow to cite
topRivière, Tristan. "Line vortices in the U(1) Higgs model." ESAIM: Control, Optimisation and Calculus of Variations 1 (1996): 77-167. <http://eudml.org/doc/90501>.
@article{Rivière1996,
author = {Rivière, Tristan},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Higgs field; Ginzburg-Landau equations},
language = {eng},
pages = {77-167},
publisher = {EDP Sciences},
title = {Line vortices in the U(1) Higgs model},
url = {http://eudml.org/doc/90501},
volume = {1},
year = {1996},
}
TY - JOUR
AU - Rivière, Tristan
TI - Line vortices in the U(1) Higgs model
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1996
PB - EDP Sciences
VL - 1
SP - 77
EP - 167
LA - eng
KW - Higgs field; Ginzburg-Landau equations
UR - http://eudml.org/doc/90501
ER -
References
top- [1] L. Almeida and F. Bethuel: Méthodes topologiques pour l'équation de Ginzburg-Landau, C.R.A.S, Paris, 320, 935-939, 1995. Zbl0826.35036MR1328714
- [2] F. Bethuel, H. Brezis and F. Hélein: Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of variations and PDE1, 123-148, 1993. Zbl0834.35014MR1261720
- [3] F. Bethuel, H. Brezis and F. Hélein: Ginzburg-Landau vortices, Birkhaüser, 1994. Zbl0802.35142MR1269538
- [4] F. Bethuel and T. Rivière: Vortices for a variational problem related to supraconductivity, Ann. Inst. Henri Poincaré, (analyse non linéaire), 12, 3, 243-303, 1995. Zbl0842.35119MR1340265
- [5] R. Bott and L. Tu: Differential forms in Algebraic Topology, Springer, 1986. Zbl0496.55001MR658304
- [6] H. Brezis, J.-M Coron and E. Lieb: Harmonic maps with defects, Comm. Math. Phys., 107, 649-705, 1986. Zbl0608.58016MR868739
- [7] H. Brezis, F. Merle and T. Rivière: Quantization effects for -∆u = u(1 - |u|2) in ℝ2, to appear in Arch. for rat. Mech. Analysis. Zbl0809.35019
- [8] J. Fröhlich and M. Struwe: Variational problems on vector bundles, Commun. Math. Phys., 131, 431-464, 1990. Zbl0714.58012MR1065892
- [9] R. Hardt and L. Simon: Seminar on geometric Measure Theory, Birkhaüser, 1986. Zbl0601.49029MR891187
- [10] A. Jaffe and C. Taubes: Vortices and Monopoles, Birkhaüser, 1980. Zbl0457.53034MR614447
- [11] F.H. Lin: Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. Inst. Henri Poincaré, (analyse nonlinéaire),12, 5, 599-622, 1995. Zbl0845.35052MR1353261
- [12] T. Rivière: Lignes de tourbillon dans le modèle abelien de Higgs, C.R.A.S., Paris, 321, 73-76, 1995. Zbl0840.35109MR1340085
Citations in EuDML Documents
top- Amandine Aftalion, Vortex dans les condensats de Bose Einstein
- Robert L. Jerrard, Local minimizers with vortex filaments for a Gross-Pitaevsky functional
- Stan Alama, Lia Bronsard, J. Alberto Montero, On the Ginzburg–Landau model of a superconducting ball in a uniform field
- Tristan Rivière, Asymptotic analysis for the Ginzburg-Landau equations
- Tristan Rivière, Ginzburg-Landau vortices : the static model
- Didier Smets, Problèmes d’évolution liés à l’énergie de Ginzburg-Landau
- Jean Bourgain, Haim Brezis, Petru Mironescu, H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation
- F. Bethuel, G. Orlandi, Uniform estimates for the parabolic Ginzburg–Landau equation
- Fabrice Bethuel, Giandomenico Orlandi, Didier Smets, Motion of concentration sets in Ginzburg-Landau equations
- F. Bethuel, G. Orlandi, Uniform estimates for the parabolic Ginzburg–Landau equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.