Convergence of the time-discretized monotonic schemes

Julien Salomon

ESAIM: Mathematical Modelling and Numerical Analysis (2007)

  • Volume: 41, Issue: 1, page 77-93
  • ISSN: 0764-583X

Abstract

top
Many numerical simulations in (bilinear) quantum control use the monotonically convergent Krotov algorithms (introduced by Tannor et al. [Time Dependent Quantum Molecular Dynamics (1992) 347–360]), Zhu and Rabitz [J. Chem. Phys. (1998) 385–391] or their unified form described in Maday and Turinici [J. Chem. Phys. (2003) 8191–8196]. In Maday et al. [Num. Math. (2006) 323–338], a time discretization which preserves the property of monotonicity has been presented. This paper introduces a proof of the convergence of these schemes and some results regarding their rate of convergence.

How to cite

top

Salomon, Julien. "Convergence of the time-discretized monotonic schemes." ESAIM: Mathematical Modelling and Numerical Analysis 41.1 (2007): 77-93. <http://eudml.org/doc/250026>.

@article{Salomon2007,
abstract = { Many numerical simulations in (bilinear) quantum control use the monotonically convergent Krotov algorithms (introduced by Tannor et al. [Time Dependent Quantum Molecular Dynamics (1992) 347–360]), Zhu and Rabitz [J. Chem. Phys. (1998) 385–391] or their unified form described in Maday and Turinici [J. Chem. Phys. (2003) 8191–8196]. In Maday et al. [Num. Math. (2006) 323–338], a time discretization which preserves the property of monotonicity has been presented. This paper introduces a proof of the convergence of these schemes and some results regarding their rate of convergence. },
author = {Salomon, Julien},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Quantum control; monotonic schemes; optimal control; Ł ojasiewicz inequality.; quantum control; Lojasiewicz inequality; time discretization; Schrödinger equation; convergence},
language = {eng},
month = {4},
number = {1},
pages = {77-93},
publisher = {EDP Sciences},
title = {Convergence of the time-discretized monotonic schemes},
url = {http://eudml.org/doc/250026},
volume = {41},
year = {2007},
}

TY - JOUR
AU - Salomon, Julien
TI - Convergence of the time-discretized monotonic schemes
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2007/4//
PB - EDP Sciences
VL - 41
IS - 1
SP - 77
EP - 93
AB - Many numerical simulations in (bilinear) quantum control use the monotonically convergent Krotov algorithms (introduced by Tannor et al. [Time Dependent Quantum Molecular Dynamics (1992) 347–360]), Zhu and Rabitz [J. Chem. Phys. (1998) 385–391] or their unified form described in Maday and Turinici [J. Chem. Phys. (2003) 8191–8196]. In Maday et al. [Num. Math. (2006) 323–338], a time discretization which preserves the property of monotonicity has been presented. This paper introduces a proof of the convergence of these schemes and some results regarding their rate of convergence.
LA - eng
KW - Quantum control; monotonic schemes; optimal control; Ł ojasiewicz inequality.; quantum control; Lojasiewicz inequality; time discretization; Schrödinger equation; convergence
UR - http://eudml.org/doc/250026
ER -

References

top
  1. A.D. Bandrauk and H. Shen, Exponential split operator methods for solving coupled time-dependent Schrödinger equations. J. Chem. Phys.99 (1993) 1185–1193.  
  2. K. Beauchard, Local controllability of a 1D Schrödinger equation. J. Math. Pures Appl.84 (2005) 851–956.  
  3. J. Bolte and H. Attouch, On the convergence of the proximal point algorithm for nonsmooth functions involving analytic features. Math. Program. (to appear).  
  4. E. Brown and H. Rabitz, Some mathematical and algorithmic challenges in the control of quantum dynamics phenomena. J. Math. Chem.31 (2002) 17–63.  
  5. A. Haraux, M.A. Jendoubi and O. Kavian, Rate of decay to equilibrium in some semilinear parabolic equations. J. Evol. Equ.3 (2003) 463–484.  
  6. K. Ito and K. Kunisch, Optimal bilinear control of an abstract Schrödinger equation. SIAM J. Cont. Opt. (to appear).  
  7. R. Judson and H. Rabitz, Teaching lasers to control molecules. Phys. Rev. Lett68 10 (1992) 1500–1503.  
  8. S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels. Colloques internationaux du CNRS, Les équations aux dérivées partielles117 (1963).  
  9. S. Łojasiewicz, Sur la géométrie semi- et sous-analytique. Ann. Inst. Fourier43 (1993) 1575–1595.  
  10. Y. Maday and G. Turinici, New formulations of monotonically convergent quantum control algorithms. J. Chem. Phys118 18 (2003) 8191–8196.  
  11. Y. Maday, J. Salomon and G. Turinici, Discretely monotonically convergent algorithm in quantum control, in Proc. LHMNLC03 IFAC conference, Sevilla (2003) 321–324.  
  12. Y. Maday, J. Salomon and G. Turinici, Monotonic time-discretized schemes in quantum control. Num. Math.103 (2006) 323–338.  
  13. H. Rabitz, G. Turinici and E. Brown, Control of quantum dynamics: Concepts, procedures and future prospects, in Computational Chemistry, Special Volume (C. Le Bris Editor) of Handbook of Numerical Analysis, Vol. X, edited by Ph.G. Ciarlet, Elsevier Science B.V. (2003).  
  14. J. Salomon, Limit points of the monotonic schemes in quantum control, in Proc. 44th IEEE Conference on Decision and Control, Sevilla (2005).  
  15. S. Shi, A. Woody and H. Rabitz, Optimal control of selective vibrational excitation in harmonic linear chain molecules. J. Chem. Phys.88 (1988) 6870–6883.  
  16. G. Strang, Accurate partial difference methods. I: Linear cauchy problems. Arch. Rat. Mech. An.12 (1963) 392–402.  
  17. J. Szeftel, Absorbing boundary conditions for nonlinear Schrödinger equation. Num. Math.104 (2006) 103–127.  
  18. D. Tannor, V. Kazakov and V. Orlov, Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds, in Time Dependent Quantum Molecular Dynamics, J. Broeckhove, L. Lathouwers Eds., Plenum (1992) 347–360.  
  19. T.N. Truong, J.J. Tanner, P. Bala, J.A. McCammon, D.J. Kouri, B. Lesyng and D.K. Hoffman, A comparative study of time dependent quantum mechanical wave packet evolution methods. J. Chem. Phys.96 (1992) 2077–2084.  
  20. W. Zhu and H. Rabitz, A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J. Chem. Phys.109 (1998) 385–391.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.