A numerical perspective on Hartree−Fock−Bogoliubov theory

Mathieu Lewin; Séverine Paul

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 1, page 53-86
  • ISSN: 0764-583X

Abstract

top
The method of choice for describing attractive quantum systems is Hartree−Fock−Bogoliubov (HFB) theory. This is a nonlinear model which allows for the description of pairing effects, the main explanation for the superconductivity of certain materials at very low temperature. This paper is the first study of Hartree−Fock−Bogoliubov theory from the point of view of numerical analysis. We start by discussing its proper discretization and then analyze the convergence of the simple fixed point (Roothaan) algorithm. Following works by Cancès, Le Bris and Levitt for electrons in atoms and molecules, we show that this algorithm either converges to a solution of the equation, or oscillates between two states, none of them being solution to the HFB equations. We also adapt the Optimal Damping Algorithm of Cancès and Le Bris to the HFB setting and we analyze it. The last part of the paper is devoted to numerical experiments. We consider a purely gravitational system and numerically discover that pairing always occurs. We then examine a simplified model for nucleons, with an effective interaction similar to what is often used in nuclear physics. In both cases we discuss the importance of using a damping algorithm.

How to cite

top

Lewin, Mathieu, and Paul, Séverine. "A numerical perspective on Hartree−Fock−Bogoliubov theory." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.1 (2014): 53-86. <http://eudml.org/doc/273215>.

@article{Lewin2014,
abstract = {The method of choice for describing attractive quantum systems is Hartree−Fock−Bogoliubov (HFB) theory. This is a nonlinear model which allows for the description of pairing effects, the main explanation for the superconductivity of certain materials at very low temperature. This paper is the first study of Hartree−Fock−Bogoliubov theory from the point of view of numerical analysis. We start by discussing its proper discretization and then analyze the convergence of the simple fixed point (Roothaan) algorithm. Following works by Cancès, Le Bris and Levitt for electrons in atoms and molecules, we show that this algorithm either converges to a solution of the equation, or oscillates between two states, none of them being solution to the HFB equations. We also adapt the Optimal Damping Algorithm of Cancès and Le Bris to the HFB setting and we analyze it. The last part of the paper is devoted to numerical experiments. We consider a purely gravitational system and numerically discover that pairing always occurs. We then examine a simplified model for nucleons, with an effective interaction similar to what is often used in nuclear physics. In both cases we discuss the importance of using a damping algorithm.},
author = {Lewin, Mathieu, Paul, Séverine},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Hartree−Fock−Bogoliubov; fixed point algorithm; relaxed constraint algorithm; nuclear physics; Hartree-Fock-Bogoliubov; superconductivity},
language = {eng},
number = {1},
pages = {53-86},
publisher = {EDP-Sciences},
title = {A numerical perspective on Hartree−Fock−Bogoliubov theory},
url = {http://eudml.org/doc/273215},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Lewin, Mathieu
AU - Paul, Séverine
TI - A numerical perspective on Hartree−Fock−Bogoliubov theory
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 1
SP - 53
EP - 86
AB - The method of choice for describing attractive quantum systems is Hartree−Fock−Bogoliubov (HFB) theory. This is a nonlinear model which allows for the description of pairing effects, the main explanation for the superconductivity of certain materials at very low temperature. This paper is the first study of Hartree−Fock−Bogoliubov theory from the point of view of numerical analysis. We start by discussing its proper discretization and then analyze the convergence of the simple fixed point (Roothaan) algorithm. Following works by Cancès, Le Bris and Levitt for electrons in atoms and molecules, we show that this algorithm either converges to a solution of the equation, or oscillates between two states, none of them being solution to the HFB equations. We also adapt the Optimal Damping Algorithm of Cancès and Le Bris to the HFB setting and we analyze it. The last part of the paper is devoted to numerical experiments. We consider a purely gravitational system and numerically discover that pairing always occurs. We then examine a simplified model for nucleons, with an effective interaction similar to what is often used in nuclear physics. In both cases we discuss the importance of using a damping algorithm.
LA - eng
KW - Hartree−Fock−Bogoliubov; fixed point algorithm; relaxed constraint algorithm; nuclear physics; Hartree-Fock-Bogoliubov; superconductivity
UR - http://eudml.org/doc/273215
ER -

References

top
  1. [1] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program.116 (2009) 5–16. Zbl1165.90018MR2421270
  2. [2] V. Bach, Error bound for the Hartree-Fock energy of atoms and molecules. Commun. Math. Phys.147 (1992) 527–548. Zbl0771.46038MR1175492
  3. [3] V. Bach, J. Fröhlich and L. Jonsson, Bogolubov-Hartree-Fock mean field theory for neutron stars and other systems with attractive interactions. J. Math. Phys. 50 (2009) 22. Zbl1248.81277MR2573100
  4. [4] V. Bach, E.H. Lieb and J.Ph. Solovej, Generalized Hartree-Fock theory and the Hubbard model. J. Statist. Phys.76 (1994) 3–89. Zbl0839.60095MR1297873
  5. [5] J. Bardeen, L.N. Cooper and J.R. Schrieffer, Theory of superconductivity. Phys. Rev.108 (1957) 1175–1204. Zbl0090.45401MR95694
  6. [6] L. Baudouin and J. Salomon, Constructive solution of a bilinear optimal control problem for a Schrödinger equation. Syst. Cont. Lett.57 (2008) 453–464. Zbl1153.49023MR2413741
  7. [7] P. Billard and G. Fano, An existence proof for the gap equation in the superconductivity theory. Commun. Math. Phys.10 (1968) 274–279. Zbl0164.57002
  8. [8] N.N. Bogoliubov, About the theory of superfluidity. Izv. Akad. Nauk SSSR 11 (1947) 77. MR22177
  9. [9] N.N. Bogoliubov, Energy levels of the imperfect Bose gas. Bull. Moscow State Univ. 7 (1947) 43. 
  10. [10] N.N. Bogoliubov, On the theory of superfluidity. J. Phys. (USSR) 11 (1947) 23. Zbl1165.82028
  11. [11] N.N. Bogoliubov, On a New Method in the Theory of Superconductivity. J. Exp. Theor. Phys. 34 (1958) 58. Zbl0090.45501
  12. [12] J. Bolte, A. Daniilidis, O. Ley and L. Mazet, Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc.362 (2010) 3319–3363. Zbl1202.26026MR2592958
  13. [13] É. Cancès, SCF algorithms for HF electronic calculations, in Mathematical models and methods for ab initio quantum chemistry, vol. 74, in Lect. Notes Chem., Chapt. 2. Springer, Berlin (2000) 17–43. Zbl0992.81103MR1855573
  14. [14] É. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational quantum chemistry: a primer, in Handbook of numerical analysis, vol. X, Handb. Numer. Anal. North-Holland, Amsterdam (2003) 3–270. Zbl1070.81534MR2008386
  15. [15] É. Cancès and C. Le Bris, Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quantum Chem.79 (2000) 82–90. 
  16. [16] É. Cancès and C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM: M2AN 34 (2000) 749–774. Zbl1090.65548MR1784484
  17. [17] É. Cancès, C. Le Bris and Y. Maday, Méthodes mathématiques en chimie quantique. Une introduction, vol. 53 of Collection Mathématiques et Applications. Springer (2006). Zbl1167.81001
  18. [18] E.B. Davies, Spectral theory and differential operators, vol. 42, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995). Zbl0893.47004
  19. [19] J. Dechargé and D. Gogny, Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei. Phys. Rev. C21 (1980) 1568–1593. 
  20. [20] C. Fefferman and R. de la Llave, Relativistic stability of matter. I. Rev. Mat. Iberoamericana2 (1986) 119–213. Zbl0602.58015
  21. [21] R.L. Frank, C. Hainzl, R. Seiringer and J.P. Solovej, Microscopic Derivation of Ginzburg-Landau Theory. J. Amer. Math. Soc.25 (2012) 667–713. Zbl1251.35156
  22. [22] R.L. Frank, C. Hainzl, S. Naboko and R. Seiringer, The critical temperature for the BCS equation at weak coupling. J. Geom. Anal.17 (2007) 559–567. Zbl1137.82025
  23. [23] G. Friesecke, The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal.16935–71 (2003). Zbl1035.81069MR1996268
  24. [24] D. Gogny, in Proceedings of the International Conference on Nuclear Physics, edited by J. de Boer and H.J. Mang. (1973) 48. 
  25. [25] D. Gogny, in Proceedings of the International Conference on Nuclear Self-Consistent Fields, edited by M. Porneuf and G. Ripka. Trieste (1975) 333. 
  26. [26] D. Gogny and P.-L. Lions, Hartree-Fock theory in nuclear physics. RAIRO Modél. Math. Anal. Numér.20 (1986) 571–637. Zbl0607.35078MR877058
  27. [27] C. Hainzl, E. Hamza, R. Seiringer and J.P. Solovej, The BCS functional for general pair interactions. Commun. Math. Phys.281 (2008) 349–367. Zbl1161.82027MR2410898
  28. [28] C. Hainzl, E. Lenzmann, M. Lewin and B. Schlein, On blowup for time-dependent generalized Hartree-Fock equations. Annal. Henri Poincaré11 (2010) 1023–1052. Zbl1209.85009MR2737490
  29. [29] C. Hainzl and R. Seiringer, General decomposition of radial functions on Rn and applications to N-body quantum systems. Lett. Math. Phys.61 (2002) 75–84. Zbl1016.81059MR1930084
  30. [30] C. Hainzl and R. Seiringer, The BCS critical temperature for potentials with negative scattering length. Lett. Math. Phys.84 (2008) 99–107. Zbl1164.81006MR2415542
  31. [31] M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A16 (1977) 1782–1785. MR471726
  32. [32] T. Kato, Perturbation theory for linear operators. Springer (1995). Zbl0836.47009MR1335452
  33. [33] C. Le Bris, Computational chemistry from the perspective of numerical analysis. Acta Numerica14 (2005) 363–444. Zbl1119.65390MR2168346
  34. [34] E. Lenzmann and M. Lewin, Minimizers for the Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs. Duke Math. J.152 (2010) 257–315. Zbl1202.49013MR2656090
  35. [35] A. Levitt, Convergence of gradient-based algorithms for the Hartree-Fock equations. ESAIM: M2AN 46 (2012) 1321–1336. Zbl1269.82008MR2996329
  36. [36] M. Lewin, Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal.260 (2011) 3535–3595. Zbl1216.81180MR2781970
  37. [37] E.H. Lieb, Variational principle for many-fermion systems. Phys. Rev. Lett.46 (1981) 457–459. MR601336
  38. [38] E.H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics. Cambridge Univ. Press (2010). Zbl1179.81004MR2583992
  39. [39] E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys.53 (1977) 185–194. MR452286
  40. [40] E.H. Lieb and W.E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy. Annal. Phys.155 (1984) 494–512. MR753345
  41. [41] E.H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys.112 (1987) 147–174. Zbl0641.35065MR904142
  42. [42] P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys.109 (1987) 33–97. Zbl0618.35111MR879032
  43. [43] S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels. Colloques du CNRS, Les équations aux dérivés partielles (1963) 117. Zbl0234.57007
  44. [44] S. Łojasiewicz, Sur la géométrie semi- et sous-analytique. Ann. Inst. Fourier (Grenoble) 43 (1993) 1575–1595. Zbl0803.32002
  45. [45] J.B. McLeod and Y. Yang, The uniqueness and approximation of a positive solution of the Bardeen-Cooper-Schrieffer gap equation. J. Math. Phys.41 (2000) 6007–6025. Zbl1054.82036
  46. [46] S. Paul, Modèle de Hartree-Fock-Bogoliubov : une perspective mathématique et numérique. Ph.D. thesis, Univ. Cergy-Pontoise (2012). 
  47. [47] P. Quentin and H. Flocard. Self-Consistent Calculations of Nuclear Properties with Phenomenological Effective Forces. Ann. Rev. Nucl. Part. Sci.28 (1978) 523–594. 
  48. [48] P. Ring and P. Schuck, The nuclear many-body problem, volume Texts and Monographs in Physics. Springer Verlag, New York (1980). 
  49. [49] C.C.J. Roothaan, New developments in molecular orbital theory. Rev. Mod. Phys.23 (1951) 69–89. Zbl0045.28502
  50. [50] J. Salomon, Convergence of the time-discretized monotonic schemes. ESAIM: M2AN 41 (2007) 77–93. Zbl1124.65059MR2323691
  51. [51] S. Consortium, Scilab: The free software for numerical computation. Scilab Consortium, Digiteo, Paris, France (2011). 
  52. [52] B. Simon, Geometric methods in multiparticle quantum systems. Commun. Math. Phys.55 (1977) 259–274. Zbl0413.47008MR496073
  53. [53] T.H.R. Skyrme. The effective nuclear potential. Nuclear Phys.9 (1959) 615–634. Zbl0083.44004
  54. [54] J.Ph. Solovej, Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math.104 (1991) 291–311. Zbl0732.35066MR1098611
  55. [55] J.Ph. Solovej, The ionization conjecture in Hartree-Fock theory. Annal. Math.158 (2003) 509–576. Zbl1106.81081MR2018928
  56. [56] A. Vansevenant, The gap equation in superconductivity theory. Phys. D17 (1985) 339–344. MR826974
  57. [57] Y.S. Yang, On the Bardeen-Cooper-Schrieffer integral equation in the theory of superconductivity. Lett. Math. Phys.22 (1991) 27–37. Zbl0729.45009MR1121846

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.