Convergence of gradient-based algorithms for the Hartree-Fock equations

Antoine Levitt

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2012)

  • Volume: 46, Issue: 6, page 1321-1336
  • ISSN: 0764-583X

Abstract

top
The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of a natural gradient algorithm, using a gradient inequality for analytic functionals due to Łojasiewicz [Ensembles semi-analytiques. Institut des Hautes Études Scientifiques (1965)]. Then, expanding upon the analysis of [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], we prove convergence results for the Roothaan and Level-Shifting algorithms. In each case, our method of proof provides estimates on the convergence rate. We compare these with numerical results for the algorithms studied.

How to cite

top

Levitt, Antoine. "Convergence of gradient-based algorithms for the Hartree-Fock equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 46.6 (2012): 1321-1336. <http://eudml.org/doc/273317>.

@article{Levitt2012,
abstract = {The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of a natural gradient algorithm, using a gradient inequality for analytic functionals due to Łojasiewicz [Ensembles semi-analytiques. Institut des Hautes Études Scientifiques (1965)]. Then, expanding upon the analysis of [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], we prove convergence results for the Roothaan and Level-Shifting algorithms. In each case, our method of proof provides estimates on the convergence rate. We compare these with numerical results for the algorithms studied.},
author = {Levitt, Antoine},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Hartree-Fock equations; Łojasiewicz inequality; optimization on manifolds},
language = {eng},
number = {6},
pages = {1321-1336},
publisher = {EDP-Sciences},
title = {Convergence of gradient-based algorithms for the Hartree-Fock equations},
url = {http://eudml.org/doc/273317},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Levitt, Antoine
TI - Convergence of gradient-based algorithms for the Hartree-Fock equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 6
SP - 1321
EP - 1336
AB - The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of a natural gradient algorithm, using a gradient inequality for analytic functionals due to Łojasiewicz [Ensembles semi-analytiques. Institut des Hautes Études Scientifiques (1965)]. Then, expanding upon the analysis of [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], we prove convergence results for the Roothaan and Level-Shifting algorithms. In each case, our method of proof provides estimates on the convergence rate. We compare these with numerical results for the algorithms studied.
LA - eng
KW - Hartree-Fock equations; Łojasiewicz inequality; optimization on manifolds
UR - http://eudml.org/doc/273317
ER -

References

top
  1. [1] F. Alouges and C. Audouze, Preconditioned gradient flows for nonlinear eigenvalue problems and application to the Hartree-Fock functional. Numer. Methods Partial Differ. Equ.25 (2009) 380–400. Zbl1166.65039MR2483772
  2. [2] G.B. Bacskay, A quadratically convergent Hartree-Fock (QC-SCF) method. Application to closed shell systems. Chem. Phys. 61 (1981) 385–404. 
  3. [3] E. Cancés, SCF algorithms for Hartree-Fock electronic calculations, in Mathematical models and methods for ab initio quantum chemistry, edited by M. Defranceschi and C. Le Bris. Lect. Notes Chem. 74 (2000). Zbl0992.81103MR1857459
  4. [4] E. Cancès and C. Le Bris, Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quant. Chem.79 (2000) 82–90. 
  5. [5] E. Cancès and C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations. Math. Mod. Numer. Anal.34 (2000) 749–774. Zbl1090.65548MR1784484
  6. [6] E. Cancès and K. Pernal, Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations. J. Chem. Phys.128 (2008) 134–108. 
  7. [7] E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational quantum chemistry : a primer. Handbook Numer. Anal.10 (2003) 3–270. Zbl1070.81534MR2008386
  8. [8] A. Edelman, T.A. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998) 303. Zbl0928.65050MR1646856
  9. [9] J.B. Francisco, J.M. Martínez and L. Martínez, Globally convergent trust-region methods for self-consistent field electronic structure calculations. J. Chem. Phys. 121 (2004) 10863. Zbl1110.92069
  10. [10] M. Griesemer and F. Hantsch, Unique solutions to Hartree-Fock equations for closed shell atoms. Arch. Ration. Mech. Anal.203 (2012) 883–900. Zbl1256.35101MR2928136
  11. [11] A. Haraux, M.A. Jendoubi and O. Kavian, Rate of decay to equilibrium in some semilinear parabolic equations. J. Evol. Equ.3 (2003) 463–484. Zbl1036.35035MR2019030
  12. [12] S. Høst, J. Olsen, B. Jansík, L. Thøgersen, P. Jørgensen and T. Helgaker, The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices. J. Chem. Phys.129 (2008) 124–106. 
  13. [13] K.N. Kudin, G.E. Scuseria and E. Cancès, A black-box self-consistent field convergence algorithm : one step closer. J. Chem. Phys. 116 (2002) 8255. 
  14. [14] E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys.53 (1977) 185–194. MR452286
  15. [15] P.L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys.109 (1987) 33–97. Zbl0618.35111MR879032
  16. [16] S. Łojasiewicz, Ensembles semi-analytiques. Institut des Hautes Études Scientifiques (1965). Zbl0241.32005
  17. [17] R. McWeeny,. The density matrix in self-consistent field theory. I. Iterative construction of the density matrix, in Proc. of R. Soc. Lond. A. Math. Phys. Sci. 235 (1956) 496. Zbl0071.42302MR81755
  18. [18] P. Pulay, Improved SCF convergence acceleration. J. Comput. Chem.3 (1982) 556–560. 
  19. [19] J. Salomon, Convergence of the time-discretized monotonic schemes. ESAIM : M2AN 41 (2007) 77–93. Zbl1124.65059MR2323691
  20. [20] V.R. Saunders and I.H. Hillier, A “Level-Shifting” method for converging closed shell Hartree-Fock wave functions. Int. J. Quant. Chem.7 (1973) 699–705. 
  21. [21] R.B. Sidje, Expokit : a software package for computing matrix exponentials. ACM Trans. Math. Softw.24 (1998) 130–156. Zbl0917.65063

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.