Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra
ESAIM: Mathematical Modelling and Numerical Analysis (2007)
- Volume: 41, Issue: 5, page 855-874
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMatthies, Gunar. "Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra." ESAIM: Mathematical Modelling and Numerical Analysis 41.5 (2007): 855-874. <http://eudml.org/doc/250052>.
@article{Matthies2007,
abstract = {
We present families of scalar nonconforming finite elements of arbitrary
order $r\ge 1$ with optimal approximation properties on quadrilaterals and
hexahedra. Their vector-valued versions together with a discontinuous
pressure approximation of order $r-1$ form inf-sup stable finite element pairs
of order r for the Stokes problem. The well-known elements by Rannacher
and Turek are recovered in the case r=1. A numerical comparison between
conforming and nonconforming discretisations will be given. Since higher
order nonconforming discretisation on quadrilaterals and hexahedra have less
unknowns and much less non-zero matrix entries compared to corresponding
conforming methods, these methods are attractive for numerical simulations.
},
author = {Matthies, Gunar},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Nonconforming finite elements; inf-sup stability;
quadrilaterals; hexahedra.; Stokes problem; finite element method; posteriori error; numerical examples},
language = {eng},
month = {10},
number = {5},
pages = {855-874},
publisher = {EDP Sciences},
title = {Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra},
url = {http://eudml.org/doc/250052},
volume = {41},
year = {2007},
}
TY - JOUR
AU - Matthies, Gunar
TI - Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2007/10//
PB - EDP Sciences
VL - 41
IS - 5
SP - 855
EP - 874
AB -
We present families of scalar nonconforming finite elements of arbitrary
order $r\ge 1$ with optimal approximation properties on quadrilaterals and
hexahedra. Their vector-valued versions together with a discontinuous
pressure approximation of order $r-1$ form inf-sup stable finite element pairs
of order r for the Stokes problem. The well-known elements by Rannacher
and Turek are recovered in the case r=1. A numerical comparison between
conforming and nonconforming discretisations will be given. Since higher
order nonconforming discretisation on quadrilaterals and hexahedra have less
unknowns and much less non-zero matrix entries compared to corresponding
conforming methods, these methods are attractive for numerical simulations.
LA - eng
KW - Nonconforming finite elements; inf-sup stability;
quadrilaterals; hexahedra.; Stokes problem; finite element method; posteriori error; numerical examples
UR - http://eudml.org/doc/250052
ER -
References
top- M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math.33 (1979) 211–224.
- D. Braess and R. Sarazin, An efficient smoother for the Stokes problem. Appl. Numer. Math.23 (1997) 3–19.
- J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal.7 (1970) 112–124.
- Z. Cai, J. Douglas, Jr. and X. Ye, A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo36 (1999) 215–232.
- Z. Cai, J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming quadrilateral finite elements: a correction. Calcolo37 (2000) 253–254.
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO.Anal. Numér.7 (1973) 33–76.
- J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM: M2AN33 (1999) 747–770.
- M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér.11 (1977) 341–354.
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin-Heidelberg-New York (1986).
- H.D. Han, Nonconforming elements in the mixed finite element method. J. Comput. Math.2 (1984) 223–233.
- J.P. Hennart, J. Jaffré and J.E. Roberts, A constructive method for deriving finite elements of nodal type. Numer. Math.53 (1988) 701–738.
- V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models . Lecture Notes in Computational Science and Engineering 34, Springer-Verlag, Berlin, Heidelberg, New York (2003).
- V. John and G. Matthies, Higher-order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Num. Meth. Fluids37 (2001) 885–903.
- V. John and G. Matthies, MooNMD—a program package based on mapped finite element methods. Comput. Vis. Sci.6 (2004) 163–169.
- V. John, P. Knobloch, G. Matthies and L. Tobiska, Non-nested multi-level solvers for finite element discretisations of mixed problems. Computing68 (2002) 313–341.
- G. Matthies and L. Tobiska, The inf-sup condition for the mapped element in arbitrary space dimensions. Computing69 (2002) 119–139.
- G. Matthies and L. Tobiska, Inf-sup stable non-conforming finite elements of arbitrary order on triangles. Numer. Math.102 (2005) 293–309.
- J. Maubach and P. Rabier, Nonconforming finite elements of arbitrary degree over triangles. RANA report 0328, Technical University of Eindhoven (2003).
- R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Meth. Part. Diff. Equ.8 (1992) 97–111.
- F. Schieweck, A general transfer operator for arbitrary finite element spaces. Preprint 00-25, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2000).
- S. Vanka, Block-implicit multigrid calculation of two-dimensional recirculating flows. Comp. Meth. Appl. Mech. Engrg.59 (1986) 29–48.
- R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér.18 (1984) 175–182.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.