A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy

Ľubomír Baňas; Robert Nürnberg

ESAIM: Mathematical Modelling and Numerical Analysis (2009)

  • Volume: 43, Issue: 5, page 1003-1026
  • ISSN: 0764-583X

Abstract

top
We derive a posteriori estimates for a discretization in space of the standard Cahn–Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation algorithm.

How to cite

top

Baňas, Ľubomír, and Nürnberg, Robert. "A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy." ESAIM: Mathematical Modelling and Numerical Analysis 43.5 (2009): 1003-1026. <http://eudml.org/doc/250578>.

@article{Baňas2009,
abstract = { We derive a posteriori estimates for a discretization in space of the standard Cahn–Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation algorithm. },
author = {Baňas, Ľubomír, Nürnberg, Robert},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Cahn–Hilliard equation; obstacle free energy; linear finite elements; a posteriori estimates; adaptive numerical methods; Cahn-Hilliard equation; linear finite elements; a posteriori error estimates; elliptic variational equality and inequality; backward Euler discretization; robustness; numerical experiments},
language = {eng},
month = {6},
number = {5},
pages = {1003-1026},
publisher = {EDP Sciences},
title = {A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy},
url = {http://eudml.org/doc/250578},
volume = {43},
year = {2009},
}

TY - JOUR
AU - Baňas, Ľubomír
AU - Nürnberg, Robert
TI - A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2009/6//
PB - EDP Sciences
VL - 43
IS - 5
SP - 1003
EP - 1026
AB - We derive a posteriori estimates for a discretization in space of the standard Cahn–Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation algorithm.
LA - eng
KW - Cahn–Hilliard equation; obstacle free energy; linear finite elements; a posteriori estimates; adaptive numerical methods; Cahn-Hilliard equation; linear finite elements; a posteriori error estimates; elliptic variational equality and inequality; backward Euler discretization; robustness; numerical experiments
UR - http://eudml.org/doc/250578
ER -

References

top
  1. N.D. Alikakos, P.W. Bates and X.F. Chen, The convergence of solutions of the Cahn–Hilliard equation to the solution of the Hele–Shaw model. Arch. Rational Mech. Anal.128 (1994) 165–205.  
  2. Ľ. Baňas and R. Nürnberg, Adaptive finite element methods for Cahn–Hilliard equations. J. Comput. Appl. Math.218 (2008) 2–11.  
  3. Ľ. Baňas and R. Nürnberg, Finite element approximation of a three dimensional phase field model for void electromigration. J. Sci. Comp.37 (2008) 202–232.  
  4. Ľ. Baňas and R. Nürnberg, Phase field computations for surface diffusion and void electromigration in 3 . Comput. Vis. Sci. (2008), doi: .  DOI10.1007/s00791-008-0114-0
  5. J.W. Barrett and J.F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Numer. Math.77 (1997) 1–34.  
  6. J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal.37 (1999) 286–318.  
  7. J.W. Barrett, R. Nürnberg and V. Styles, Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal.42 (2004) 738–772.  
  8. J.F. Blowey and C.M. Elliott, The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Mathematical analysis. European J. Appl. Math.2 (1991) 233–279.  
  9. J.F. Blowey and C.M. Elliott, The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis. European J. Appl. Math.3 (1992) 147–179.  
  10. D. Braess, A posteriori error estimators for obstacle problems – another look. Numer. Math.101 (2005) 415–421.  
  11. J.W. Cahn, On spinodal decomposition. Acta Metall.9 (1961) 795–801.  
  12. J.W. Cahn and J.E. Hilliard, Free energy of a non-uniform system. I. Interfacial free energy. J. Chem. Phys.28 (1958) 258–267.  
  13. X. Chen, Spectrum for the Allen–Cahn, Cahn–Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differ. Equ.19 (1994) 1371–1395.  
  14. Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math.84 (2000) 527–548.  
  15. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér.9 (1975) 77–84.  
  16. C.M. Elliott and Z. Songmu, On the Cahn–Hilliard equation. Arch. Rational Mech. Anal.96 (1986) 339–357.  
  17. C.M. Elliott, D.A. French and F.A. Milner, A second order splitting method for the Cahn–Hilliard equation. Numer. Math.54 (1989) 575–590.  
  18. X. Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math.99 (2004) 47–84.  
  19. X. Feng and H. Wu, A posteriori error estimates for finite element approximations of the Cahn–Hilliard equation and the Hele–Shaw flow. J. Comput. Math.26 (2008) 767–796.  
  20. M. Hintermüller and R.H.W. Hoppe, Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim.47 (2008) 1721–1743.  
  21. M. Hintermüller, R.H.W. Hoppe, Y. Iliash and M. Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: COCV14 (2008) 540–560.  
  22. J. Kim, K. Kang and J. Lowengrub, Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys.193 (2004) 511–543.  
  23. L. Modica, Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire4 (1987) 487–512.  
  24. K.-S. Moon, R.H. Nochetto, T. von Petersdorff and C.-S. Zhang, A posteriori error analysis for parabolic variational inequalities. ESAIM: M2AN41 (2007) 485–511.  
  25. R.H. Nochetto and L.B. Wahlbin, Positivity preserving finite element approximation. Math. Comp.71 (2002) 1405–1419.  
  26. R.L. Pego, Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London Ser. A422 (1989) 261–278.  
  27. A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal.39 (2001) 146–167.  
  28. A. Veeser, On a posteriori error estimation for constant obstacle problems, in Numerical methods for viscosity solutions and applications (Heraklion, 1999), M. Falcone and C. Makridakis Eds., Ser. Adv. Math. Appl. Sci.59, World Sci. Publ., River Edge, USA (2001) 221–234.  
  29. R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner-Wiley, New York (1996).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.