Minimum variance importance sampling via Population Monte Carlo
R. Douc; A. Guillin; J.-M. Marin; C. P. Robert
ESAIM: Probability and Statistics (2007)
- Volume: 11, page 427-447
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topDouc, R., et al. "Minimum variance importance sampling via Population Monte Carlo." ESAIM: Probability and Statistics 11 (2007): 427-447. <http://eudml.org/doc/250132>.
@article{Douc2007,
abstract = {
Variance reduction has always been a central issue in Monte Carlo experiments. Population Monte Carlo
can be used to this effect, in that a mixture of importance functions, called a D-kernel, can be iteratively
optimized to achieve the minimum asymptotic variance for a function of interest among all possible mixtures.
The implementation of this iterative scheme is illustrated for the computation of the price of a European
option in the Cox-Ingersoll-Ross model. A Central Limit theorem as well as moderate deviations
are established for the D-kernel Population Monte Carlo methodology.
},
author = {Douc, R., Guillin, A., Marin, J.-M., Robert, C. P.},
journal = {ESAIM: Probability and Statistics},
keywords = {Adaptivity;
Cox-Ingersoll-Ross model;
Euler scheme;
importance sampling;
mathematical finance;
mixtures;
moderate deviations;
population Monte Carlo;
variance reduction.; adaptivity; cox-ingersoll-Ross model; Euler scheme; importance sampling; mathematical finance; mixtures; moderate deviations; population Monte Carlo; variance reduction},
language = {eng},
month = {8},
pages = {427-447},
publisher = {EDP Sciences},
title = {Minimum variance importance sampling via Population Monte Carlo},
url = {http://eudml.org/doc/250132},
volume = {11},
year = {2007},
}
TY - JOUR
AU - Douc, R.
AU - Guillin, A.
AU - Marin, J.-M.
AU - Robert, C. P.
TI - Minimum variance importance sampling via Population Monte Carlo
JO - ESAIM: Probability and Statistics
DA - 2007/8//
PB - EDP Sciences
VL - 11
SP - 427
EP - 447
AB -
Variance reduction has always been a central issue in Monte Carlo experiments. Population Monte Carlo
can be used to this effect, in that a mixture of importance functions, called a D-kernel, can be iteratively
optimized to achieve the minimum asymptotic variance for a function of interest among all possible mixtures.
The implementation of this iterative scheme is illustrated for the computation of the price of a European
option in the Cox-Ingersoll-Ross model. A Central Limit theorem as well as moderate deviations
are established for the D-kernel Population Monte Carlo methodology.
LA - eng
KW - Adaptivity;
Cox-Ingersoll-Ross model;
Euler scheme;
importance sampling;
mathematical finance;
mixtures;
moderate deviations;
population Monte Carlo;
variance reduction.; adaptivity; cox-ingersoll-Ross model; Euler scheme; importance sampling; mathematical finance; mixtures; moderate deviations; population Monte Carlo; variance reduction
UR - http://eudml.org/doc/250132
ER -
References
top- B. Arouna, Robbins-Monro algorithms and variance reduction in Finance. J. Computational Finance7 (2003) 1245–1255.
- B. Arouna, Adaptative Monte Carlo method, A variance reduction technique. Monte Carlo Methods Appl.10 (2004) 1–24.
- V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations (i): convergence rate of the distribution function. Probability Theory and Related Fields104 (1996a) 43–60.
- V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations (ii): convergence rate of the density. Probability Theory and Related Fields104 (1996b) 98–128.
- M. Bossy, E. Gobet and D. Talay, Symmetrized Euler scheme for an efficient approximation of reflected diffusions. J. Appl. Probab.41 (2004) 877–889.
- J. Bucklew, Large Deviation Techniques in Decision, Simulation and Estimation. John Wiley, New York (1990).
- O. Cappé, A. Guillin, J.-M. Marin and C. Robert, Population Monte Carlo. J. Comput. Graph. Statist.13 (2004) 907–929.
- O. Cappé, E. Moulines and T. Rydèn, Inference in Hidden Markov Models. Springer-Verlag, New York (2005).
- J. Cox, J. Ingersoll, and A. Ross, A theory of the term structure of interest rates. Econometrica53 (1985) 385–408.
- P. Del Moral, A. Doucet, and A. Jasra, Sequential Monte Carlo samplers. J. Royal Statist. Soc. Series B68 (2006) 411–436.
- A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Jones and Barlett Publishers, Inc., Boston (1993).
- R. Douc, A. Guillin, J.-M. Marin and C. Robert Convergence of adaptive mixtures of importance sampling schemes. Ann. Statist.35 (2007).
- P. Glasserman, Monte Carlo Methods in Financial Engineering. Springer-Verlag (2003)
- Y. Iba, Population-based Monte Carlo algorithms. Trans. Japanese Soc. Artificial Intell.16 (2000) 279–286.
- P. Jackel Monte Carlo Methods in Finance. John Wiley and Sons (2002).
- B. Lapeyre, E. Pardoux and R. Sentis Méthodes de Monte Carlo pour les équations de transport et de diffusion. Mathématiques et Applications, Vol. 29. Springer Verlag (1998).
- C .Robert and G. Casella, Monte Carlo Statistical Methods. Springer-Verlag, New York, second edition (2004).
- D. Rubin, A noniterative sampling importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR algorithm. (In the discussion of Tanner and Wong paper) J. American Statist. Assoc. 82 (1987) 543–546.
- D. Rubin, Using the SIR algorithm to simulate posterior distributions. In Bernardo, J., Degroot, M., Lindley, D., and Smith, A. Eds., Bayesian Statistics 3: Proceedings of the Third Valencia International Meeting, June 1–5, 1987. Clarendon Press (1988).
- R. Rubinstein, Simulation and the Monte Carlo Method. J. Wiley, New York (1981).
- R. Rubinstein and D. Kroese, The Cross-Entropy Method. Springer-Verlag, New York (2004).
- Y. Su and M. Fu, Optimal importance sampling in securities pricing. J. Computational Finance5 (2002) 27–50.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.