A generalization of a generic theorem in the theory of cardinal invariants of topological spaces
Alejandro Ramírez-Páramo; Noé Trinidad Tapia-Bonilla
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 1, page 177-187
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRamírez-Páramo, Alejandro, and Tapia-Bonilla, Noé Trinidad. "A generalization of a generic theorem in the theory of cardinal invariants of topological spaces." Commentationes Mathematicae Universitatis Carolinae 48.1 (2007): 177-187. <http://eudml.org/doc/250240>.
@article{Ramírez2007,
abstract = {The main goal of this paper is to establish a technical result, which provides an algorithm to prove several cardinal inequalities and relative versions of cardinal inequalities related to the well-known Arhangel’skii’s inequality: If $X$ is a $T_2$-space, then $|X|\le 2^\{L(X)\chi (X)\}$. Moreover, we will show relative versions of three well-known cardinal inequalities.},
author = {Ramírez-Páramo, Alejandro, Tapia-Bonilla, Noé Trinidad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cardinal functions; cardinal inequalities; cardinal function; cardinal inequality; closure operator},
language = {eng},
number = {1},
pages = {177-187},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A generalization of a generic theorem in the theory of cardinal invariants of topological spaces},
url = {http://eudml.org/doc/250240},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Ramírez-Páramo, Alejandro
AU - Tapia-Bonilla, Noé Trinidad
TI - A generalization of a generic theorem in the theory of cardinal invariants of topological spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 1
SP - 177
EP - 187
AB - The main goal of this paper is to establish a technical result, which provides an algorithm to prove several cardinal inequalities and relative versions of cardinal inequalities related to the well-known Arhangel’skii’s inequality: If $X$ is a $T_2$-space, then $|X|\le 2^{L(X)\chi (X)}$. Moreover, we will show relative versions of three well-known cardinal inequalities.
LA - eng
KW - cardinal functions; cardinal inequalities; cardinal function; cardinal inequality; closure operator
UR - http://eudml.org/doc/250240
ER -
References
top- Alas O.T., More topological cardinal inequalities, Colloq. Math. 65 (1993), 165-168. (1993) Zbl0842.54002MR1240163
- Arhangel'skii A.V., A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin. 36 2 (1995), 305-327. (1995) MR1357532
- Arhangel'skiĭ A.V., The structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 6 (1978). (1978) MR0526012
- Bella A., Cammaroto F., On the cardinality of Urysohn spaces, Canad. Math. Bull. 31 (1988), 153-158. (1988) Zbl0646.54005MR0942065
- Bell M., Ginsburg J., Woods G., Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79 1 (1978), 37-45. (1978) MR0526665
- Gryzlov A.A., Stavrova D.N., Topological spaces with a selected subset-cardinal invariants and inequalities, Comment. Math. Univ. Carolin. 35 3 (1994), 525-531. (1994) Zbl0869.54007MR1307279
- Hajnal A., Juhász I., Discrete subspaces of topological spaces II, Indag. Math. 31 (1969), 18-30. (1969) MR0264585
- Hodel R.E., Arhangel'skiĭ's Solution to Alexandroff's problem: A survey, Topology Appl. 153 13 (2006), 2199-2217. (2006) MR2238725
- Hodel R.E., Combinatorial set theory and cardinal functions inequalities, Proc. Amer. Math. Soc. 111 (1992), 567-575. (1992) MR1039531
- Hodel R.E., Cardinal functions I, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp.1-61. Zbl0559.54003MR0776620
- Juhász I., Cardinal Functions in Topology - Ten Years Later, Mathematisch Centrum, Amsterdam, 1980. MR0576927
- Stavrova, D., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc. 25 (2000), 333-343. (2000) Zbl1027.54006MR1925691
- Shu-Hao S., Two new topological cardinal inequalities, Proc. Amer. Math. Soc. 104 (1988), 313-316. (1988) MR0958090
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.