Variational calculus on Lie algebroids
ESAIM: Control, Optimisation and Calculus of Variations (2008)
- Volume: 14, Issue: 2, page 356-380
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topMartínez, Eduardo. "Variational calculus on Lie algebroids." ESAIM: Control, Optimisation and Calculus of Variations 14.2 (2008): 356-380. <http://eudml.org/doc/250369>.
@article{Martínez2008,
abstract = {
It is shown that the Lagrange's equations for a Lagrangian system on a Lie algebroid are obtained as the equations for the critical points of the action functional defined on a Banach manifold of curves. The theory of Lagrangian reduction and the relation with the method of Lagrange multipliers are also studied.
},
author = {Martínez, Eduardo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Variational calculus; Lagrangian mechanics; Lie algebroids; reduction of dynamical systems; Euler-Poincaré equations; Lagrange-Poincaré equations; variational calculus},
language = {eng},
month = {3},
number = {2},
pages = {356-380},
publisher = {EDP Sciences},
title = {Variational calculus on Lie algebroids},
url = {http://eudml.org/doc/250369},
volume = {14},
year = {2008},
}
TY - JOUR
AU - Martínez, Eduardo
TI - Variational calculus on Lie algebroids
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2008/3//
PB - EDP Sciences
VL - 14
IS - 2
SP - 356
EP - 380
AB -
It is shown that the Lagrange's equations for a Lagrangian system on a Lie algebroid are obtained as the equations for the critical points of the action functional defined on a Banach manifold of curves. The theory of Lagrangian reduction and the relation with the method of Lagrange multipliers are also studied.
LA - eng
KW - Variational calculus; Lagrangian mechanics; Lie algebroids; reduction of dynamical systems; Euler-Poincaré equations; Lagrange-Poincaré equations; variational calculus
UR - http://eudml.org/doc/250369
ER -
References
top- R. Abraham, J.E. Marsden and T.S. Ratiu Manifolds, tensor analysis and applications Addison-Wesley, (1983)
- C. Altafini Reduction by group symmetry of second order variational problems on a semidirect product of Lie groups with positive definite Riemannian metric ESAIM: COCV 10 (2004) 526–548
- V.I. Arnold Dynamical Systems III Springer-Verlag (1988)
- A. Cannas da Silva and A. Weinstein Geometric models for noncommutative algebras Amer. Math. Soc., Providence, RI (1999) xiv + 184 pp
- J.F. Cariñena and E. Martínez Lie algebroid generalization of geometric mechanics in Lie Algebroids and related topics in differential geometry (Warsaw 2000), Banach Center Publications 54 (2001) 201
- H. Cendra, A. Ibort and J.E. Marsden Variational principal fiber bundles: a geometric theory of Clebsch potentials and Lin constraints J. Geom. Phys 4 (1987) 183–206
- H. Cendra, J.E. Marsden and T.S. Ratiu Lagrangian reduction by stages Mem. Amer. Math. Soc 152 (2001) x + 108 pp
- H. Cendra, J.E. Marsden, S. Pekarsky and T.S. Ratiu Variational principles for Lie-Poisson and Hamilton-Poincaré equations Moscow Math. J 3 (2003) 833–867
- J. Cortés, M. de León, J.C. Marrero and E. Martínez Nonholonomic Lagrangian systems on Lie algebroids Preprint 2005, URIarXiv:math-ph/0512003
- J. Cortés, M. de León, J.C. Marrero, D. Martín de Diego and E. Martínez A survey of Lagrangian mechanics and control on Lie algebroids and groupoids Int. J. Geom. Meth. Math. Phys 3 (2006) 509–558
- M. Crainic and R.L. Fernandes Integrability of Lie brackets Ann. Math 157 (2003) 575–620
- M. Crampin Tangent bundle geometry for Lagrangian dynamics J. Phys. A: Math. Gen 16 (1983) 3755–3772
- M. de León, J.C. Marrero and E. Martínez Lagrangian submanifolds and dynamics on Lie algebroids J. Phys. A: Math. Gen 38 (2005) R241–R308
- K. Grabowska, J. Grabowski and P. Urbanski Geometrical Mechanics on algebroids Int. Jour. Geom. Meth. Math. Phys 3 (2006) 559–576
- D.D. Holm, J.E. Marsden and T.S. Ratiu The Euler-Poincaré equations and semidirect products with applications to continuum theories Adv. Math 137 (1998) 1–81
- J. Klein Espaces variationnels et mécanique Ann. Inst. Fourier 12 (1962) 1–124
- S. Lang Differential manifolds Springer-Verlag, New-York (1972)
- C. López Variational calculus, symmetries and reduction Int. J. Geom. Meth. Math. Phys 3 (2006) 577–590
- K.C.H. Mackenzie General Theory of Lie Groupoids and Lie Algebroids Cambridge University Press (2005)
- J.E. Marsden and T.S. Ratiu Introduction to Mechanics and symmetry Springer-Verlag, 1999
- E. Martínez Lagrangian Mechanics on Lie algebroids Acta Appl. Math 67 (2001) 295–320
- E. Martínez Geometric formulation of Mechanics on Lie algebroids, in Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, 1999, Publicaciones de la RSME 2 (2001) 209–222
- E. Martínez Reduction in optimal control theory Rep. Math. Phys 53 (2004) 79–90
- E. Martínez Classical field theory on Lie algebroids: Multisymplectic formalism Preprint 2004, arXiv:math.DG/0411352
- E. Martínez Classical Field Theory on Lie algebroids: Variational aspects J. Phys. A: Mat. Gen 38 (2005) 7145–7160
- E. Martínez, T. Mestdag and W. Sarlet Lie algebroid structures and Lagrangian systems on affine bundles J. Geom. Phys 44 (2002) 70–95
- P. Michor Topics in differential geometryBook on the internet. URIhttp://www.mat.univie.ac.at/~michor/dgbook.pdf
- J.P. Ortega and T.S. Ratiu Momentum maps and Hamiltonian Reduction Birkhäuser (2004)
- P. Piccione and D. Tausk Lagrangian and Hamiltonian formalism for constrained variational problems Proc. Roy. Soc.Edinburgh Sect. A 132 (2002) 1417–1437
- W. Sarlet, T. Mestdag and E. Martínez Lagrangian equations on affine Lie algebroids Differential Geometry and its Applications, in Proc. 8th Int. Conf. (Opava 2001), D. Krupka et al Eds
- A. Weinstein Lagrangian Mechanics and groupoids Fields Inst. Comm 7 (1996) 207–231
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.