A Hamiltonian approach to the discrete-continuous dynamical systems in diamond-type crystals.
Ce travail est essentiellement consacré aux systèmes dynamiques non conservatifs, la force généralisée dépendant à la fois des paramètres de position et de vitesse . désignant l’espace-temps de configuration, l’espace fibré des vecteurs tangents, celui des directions tangentes à , on caractérise par son lagrangien homogène et le tenseur-force antisymétrique dont le produit contracté par le vecteur vitesse donne le vecteur force généralisé.Dans la première partie, on étudie l’algèbre...
MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf GorenfloWe propose a generalization of Hamilton’s principle in which the minimization is performed with respect to the admissible functions and the order of the derivation. The Euler–Lagrange equations for such minimization are derived. They generalize the classical Euler-Lagrange equation. Also, a new variational problem is formulated in the case when the order of the derivative is defined through a constitutive equation....
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05We treat the fractional order differential equation that contains the left and right Riemann-Liouville fractional derivatives. Such equations arise as the Euler-Lagrange equation in variational principles with fractional derivatives. We reduce the problem to a Fredholm integral equation and construct a solution in the space of continuous functions. Two competing approaches in formulating differential equations of fractional order...
A mathematical model is proposed in order to describe the behaviour of mechanical systems with constraints.
It is shown that the Lagrange's equations for a Lagrangian system on a Lie algebroid are obtained as the equations for the critical points of the action functional defined on a Banach manifold of curves. The theory of Lagrangian reduction and the relation with the method of Lagrange multipliers are also studied.