Numerical simulation of blood flows through a porous interface
Miguel A. Fernández; Jean-Frédéric Gerbeau; Vincent Martin
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 6, page 961-990
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topFernández, Miguel A., Gerbeau, Jean-Frédéric, and Martin, Vincent. "Numerical simulation of blood flows through a porous interface." ESAIM: Mathematical Modelling and Numerical Analysis 42.6 (2008): 961-990. <http://eudml.org/doc/250387>.
@article{Fernández2008,
abstract = {
We propose a model for a medical device, called a stent, designed for
the treatment of cerebral aneurysms. The stent consists of a grid,
immersed in the blood flow and located at the inlet of the aneurysm.
It aims at promoting a clot within the aneurysm. The blood flow is
modelled by the incompressible Navier-Stokes equations and the stent
by a dissipative surface term. We propose a stabilized finite element
method for this model and we analyse its convergence in the case of
the Stokes equations. We present numerical results for academical test
cases, and on a realistic aneurysm obtained from medical imaging.
},
author = {Fernández, Miguel A., Gerbeau, Jean-Frédéric, Martin, Vincent},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Stabilized finite element; sieve problem; blood flow;
terminal aneurysm; stent; fluid-structure interaction.; stabilized finite element; terminal aneurysm; fluid-structure interactions; quasi-Poiseuille flow},
language = {eng},
month = {8},
number = {6},
pages = {961-990},
publisher = {EDP Sciences},
title = {Numerical simulation of blood flows through a porous interface},
url = {http://eudml.org/doc/250387},
volume = {42},
year = {2008},
}
TY - JOUR
AU - Fernández, Miguel A.
AU - Gerbeau, Jean-Frédéric
AU - Martin, Vincent
TI - Numerical simulation of blood flows through a porous interface
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/8//
PB - EDP Sciences
VL - 42
IS - 6
SP - 961
EP - 990
AB -
We propose a model for a medical device, called a stent, designed for
the treatment of cerebral aneurysms. The stent consists of a grid,
immersed in the blood flow and located at the inlet of the aneurysm.
It aims at promoting a clot within the aneurysm. The blood flow is
modelled by the incompressible Navier-Stokes equations and the stent
by a dissipative surface term. We propose a stabilized finite element
method for this model and we analyse its convergence in the case of
the Stokes equations. We present numerical results for academical test
cases, and on a realistic aneurysm obtained from medical imaging.
LA - eng
KW - Stabilized finite element; sieve problem; blood flow;
terminal aneurysm; stent; fluid-structure interaction.; stabilized finite element; terminal aneurysm; fluid-structure interactions; quasi-Poiseuille flow
UR - http://eudml.org/doc/250387
ER -
References
top- G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Rational Mech. Anal.113 (1991) 261–298.
- J.L. Berry, A. Santamarina, J.E. Jr. Moore, S. Roychowdhury and W.D. Routh, Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng.28 (2000) 386–398.
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin (1991).
- A. Brillard, Asymptotic flow of a viscous and incompressible fluid through a plane sieve, in Progress in partial differential equations: calculus of variations, applications (Pont-à-Mousson, 1991), Pitman Res. Notes Math. Ser.267, Longman Sci. Tech., Harlow (1992) 158–172.
- E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Engrg.195 (2006) 2393–2410.
- D. Chapelle and K.J. Bathe, The finite element analysis of shell – Fundamentals. Springer-Verlag (2004).
- P.G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].
- P. Clément, Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér.9(R-2) (1975) 77–84.
- R. Codina and J. Blasco, A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput. Methods Appl. Mech. Engrg.143 (1997) 373–391.
- C. Conca, Étude d'un fluide traversant une paroi perforée, I. Comportement limite près de la paroi. J. Math. Pures Appl.66 (1987) 1–43.
- C. Conca, Étude d'un fluide traversant une paroi perforée, II. Comportement limite loin de la paroi. J. Math. Pures Appl.66 (1987) 45–70.
- C. Conca and M. Sepúlveda, Numerical results in the Stokes sieve problem. Rev. Internac. Métod. Numér. Cálc. Diseñ. Ingr.5 (1989) 435–452.
- A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences159. Springer-Verlag, New York (2004).
- L. Formaggia, J.-F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Engrg.191 (2001) 561–582.
- P. Frey, Yams: A fully automatic adaptive isotropic surface remeshing procedure. Technical report 0252, INRIA, Rocquencourt, France, Nov. (2001).
- P. Frey, Medit: An interactive mesh visualisation software. Technical report 0253, INRIA, Rocquencourt, France, Dec. (2001).
- J.-F. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid structure problems in blood flows. ESAIM: M2AN37 (2003) 631–647.
- J.-F. Gerbeau, M. Vidrascu and P. Frey, Fluid-structure interaction in blood flows on geometries coming from medical imaging. Comput. Struct.83 (2005) 155–165.
- V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations – Theory and algorithms, Springer Series in Computational Mathematics5. Springer-Verlag, Berlin (1986).
- T.J.R. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comp. Meth. App. Mech. Eng.59 (1986) 85–99.
- A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in Handbook of Numerical AnalysisXII, North-Holland, Amsterdam (2004) 3–127.
- S. Salmon, M. Thiriet and J.-F. Gerbeau, Medical image-based computational model of pulsatile flow in saccular aneurisms. ESAIM: M2AN37 (2003) 663–679.
- E. Sánchez-Palencia, Problèmes mathématiques liés à l'écoulement d'un fluide visqueux à travers une grille, in Ennio De Giorgi colloquium (Paris, 1983), Res. Notes in Math.125, Pitman, Boston, USA (1985) 126–138.
- L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.54(190) (1990) 483–493.
- D.A. Steinman, J.S. Milner, C.J. Norley, S.P. Lownie and D.W. Holdsworth, Image-based computational simulation of flow dynamics int a giant intracranial aneurysms. Am. J. Neuroradiol.24 (2003) 559–566.
- G.R. Stuhne and D.A. Steinman, Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng.126 (2004) 382–387.
- V. Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics25. Springer-Verlag, Berlin, second edition (2006).
- L. Tobiska and V. Verfurth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal.33 (1996) 107–127.
- I.E. Vignon-Clementel, C.A. Figueroa, K.E. Jansen and C.A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg.195 (2006) 3776–3796.
- N.T. Wang and A.L. Fogelson, Computational methods for continuum models of platelet aggregation. J. Comput. Phys.151 (1999) 649–675.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.