Capitulation in certain nonramified extensions of cyclic quartic fields

Abdelmalek Azizi; Mohammed Talbi

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 4, page 271-284
  • ISSN: 0044-8753

Abstract

top
Let K = k ( - p ε l ) with k = ( l ) where l is a prime number such that l = 2 or l 5 m o d 8 , ε the fundamental unit of k , p a prime number such that p 1 m o d 4 and ( p l ) 4 = - 1 , K 2 ( 1 ) the Hilbert 2 -class field of K , K 2 ( 2 ) the Hilbert 2 -class field of K 2 ( 1 ) and G = Gal ( K 2 ( 2 ) / K ) the Galois group of K 2 ( 2 ) / K . According to E. Brown and C. J. Parry [7] and [8], C 2 , K , the Sylow 2 -subgroup of the ideal class group of K , is isomorphic to / 2 × / 2 , consequently K 2 ( 1 ) / K contains three extensions F i / K ( i = 1 , 2 , 3 ) and the tower of the Hilbert 2 -class field of K terminates at either K 2 ( 1 ) or K 2 ( 2 ) . In this work, we are interested in the problem of capitulation of the classes of C 2 , K in F i ( i = 1 , 2 , 3 ) and to determine the structure of G . Résumé. Soient K = k ( - p ε l ) avec k = ( l ) l est un nombre premier tel que l = 2 ou l 5 m o d 8 , ε l’unité fondamentale de k , p un nombre premier tels que p 1 m o d 4 et ( p l ) 4 = - 1 , K 2 ( 1 ) le 2 -corps de classes de Hilbert de K , K 2 ( 2 ) le 2 -corps de classes de Hilbert de K 2 ( 1 ) et G = Gal ( K 2 ( 2 ) / K ) le groupe de Galois de K 2 ( 2 ) / K . D’après E. Brown et C. J. Parry [7] et [8], C 2 , K , le 2 -groupe de classes de K , est isomorphe à / 2 × / 2 , par conséquent K 2 ( 1 ) / K contient trois extensions F i / K ( i = 1 , 2 , 3 ) et la tour des 2 -corps de classes de Hilbert de K s’arrête en K 2 ( 1 ) ou en K 2 ( 2 ) . Dans ce travail, on s’intéresse au problème de capitulation des classes de C 2 , K dans F i ( i = 1 , 2 , 3 ) et à déterminer la structure de G .

How to cite

top

Azizi, Abdelmalek, and Talbi, Mohammed. "Capitulation dans certaines extensions non ramifiées de corps quartiques cycliques." Archivum Mathematicum 044.4 (2008): 271-284. <http://eudml.org/doc/250477>.

@article{Azizi2008,
author = {Azizi, Abdelmalek, Talbi, Mohammed},
journal = {Archivum Mathematicum},
keywords = {corps biquadratiques cycliques; groupe de classes; capitulation; corps de classes de Hilbert; biquadratic field; capitulation; Hilbert class field},
language = {fre},
number = {4},
pages = {271-284},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Capitulation dans certaines extensions non ramifiées de corps quartiques cycliques},
url = {http://eudml.org/doc/250477},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Azizi, Abdelmalek
AU - Talbi, Mohammed
TI - Capitulation dans certaines extensions non ramifiées de corps quartiques cycliques
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 4
SP - 271
EP - 284
LA - fre
KW - corps biquadratiques cycliques; groupe de classes; capitulation; corps de classes de Hilbert; biquadratic field; capitulation; Hilbert class field
UR - http://eudml.org/doc/250477
ER -

References

top
  1. Azizi, A., Capitulation des 2 -classes d’idéaux de ( d , i ) , C. R. Acad. Sci. Paris Sér. I Math. 325 (2) (1997), 127–130. (1997) MR1467063
  2. Azizi, A., Unités de certains corps de nombres imaginaires et abéliens sur , Ann. Sci. Math. Québec 23 (1999), 87–93. (1999) MR1721726
  3. Azizi, A., Capitulation des 2 -classes d’idéaux de ( 2 p q , i ) , Acta Arith. 94 (2000), 383–399. (2000) MR1779950
  4. Azizi, A., 10.1090/S0002-9939-02-06424-9, Proc. Amer. Math. Soc. 130 (2002), 2197–2002. (2002) Zbl1010.11061MR1897477DOI10.1090/S0002-9939-02-06424-9
  5. Azizi, A., Sur les unités de certains corps de nombres de degré 8 sur , Ann. Sci. Math. Québec 29 (2005), 111–129. (2005) MR2309703
  6. Azizi, A., Talbi, M., 10.4064/aa127-3-3, Acta Arith. 127 (2007), 231–248. (2007) Zbl1169.11049MR2310345DOI10.4064/aa127-3-3
  7. Brown, E., Parry, C. J., The 2 -class group of certain biquadratic number fields I, J. Reine Angew. Math. 295 (1977), 61–71. (1977) MR0457398
  8. Brown, E., Parry, C. J., 10.2140/pjm.1978.78.11, Pacific J. Math. 78 (1) (1978), 11–26. (1978) MR0513279DOI10.2140/pjm.1978.78.11
  9. Conner, P. E., Hurrelbrink, J., 10.1142/0663, Ser. Pure Math., 8, World Sci, 1988. (1988) Zbl0743.11061MR0963648DOI10.1142/0663
  10. Hasse, H., Neue Begründung der Theorie des Normenrestsymbols, J. Reine Angew. Math. 162 (1930), 134–143. (1930) 
  11. Heider, F. P., Schmithals, B., Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math. 366 (1982), 1–25. (1982) Zbl0505.12016MR0671319
  12. Ishida, M., The genus fields of algebraic number fields, Lecture Notes in Math. 555 (1976). (1976) Zbl0353.12001MR0435028
  13. Kaplan, P., Sur le 2 -groupe des classes d’idéaux des corps quadratiques, J. Reine Angew. Math. 283/284 (1976), 313–363. (1976) Zbl0337.12003MR0404206
  14. Kisilevsky, H., 10.1016/0022-314X(76)90004-4, J. Number Theory 8 (1976), 271–279. (1976) MR0417128DOI10.1016/0022-314X(76)90004-4
  15. Kubota, T., Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65–85. (1956) Zbl0074.03001MR0083009
  16. Kučera, R., 10.1006/jnth.1995.1054, J. Number Theory 52 (1995), 43–52. (1995) DOI10.1006/jnth.1995.1054
  17. Kuroda, S., Über den Dirichletschen Zahlkörper, Fac. Sci. Imp. Univ. Tokyo Sec. I 4 (1943), 383–406. (1943) MR0021031
  18. Lemmermeyer, F., Kuroda’s class number formula, Acta Arith. 66 (3) (1994), 245–260. (1994) Zbl0807.11052MR1276992
  19. Wada, H., On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 201–209. (1966) Zbl0158.30103MR0214565

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.